

Building a quantum computer that offers advantages over classical computers is the goal of quantum computing groups worldwide. A competitive quantum computer must be “universal”, requiring the ability to perform all operations already possible on a classical computer, as well as new ones specific to quantum computing. Of course, that’s just the beginning – it should also be able to do this in a reasonable amount of time, to deal effectively with noise from the environment, and to perform computations to arbitrary accuracy.
This is a lot to get right, and over the years quantum computer scientists have described ways to solve these often-overlapping challenges. To deal with noise from the environment and achieve arbitrary accuracy, quantum computers need to be able to keep going even as noise accumulates on the quantum bits, or qubits, which hold the quantum information. Such fault-tolerance may be achieved using quantum error correction, where ensembles of physical qubits are encoded into logical qubits and those are used to counteract noise and perform computational operations called gates. Unfortunately, no single quantum error correction code plays well with the goal of universality because all codes lack a complete universal set of fault-tolerant gates (the technical reason for this comes down to the way quantum gates are executed between logical qubits – the native gate set on error-corrected logical qubits are known by experts as transversal gates, and they do not include all the gates needed for universal quantum computing).
The solution to this obstacle to universality is a magic state, a quantum state which provides for the missing gate when error correcting codes are used. High fidelity magic states are achieved by a process of distillation, which purifies them from other noisier magic states. It is widely recognized that magic state distillation is one of the totemic challenges on the path towards universal, fault-tolerant quantum computing. Quantinuum’s scientists, in close collaboration with a team at Microsoft, set out to demonstrate the distillation process in real-time using physical qubits on a quantum computer for the first time.
The results of this work are available in a new paper, Advances in compilation for quantum hardware -- A demonstration of magic state distillation and repeat until success protocols.
How does magic state distillation work? Imagine a factory, taking in many qubits in imperfect initial states at one end. Broadly speaking, the factory distills the imperfect states into an almost pure state with a smaller error probability, by sending them through a well-defined process over and over. In this case, the process takes in a group of five qubits. It applies a quantum error correcting code that entangles these five qubits, with four used to test whether the fifth, target qubit has been purified. If the process fails, the ensemble is discarded and the process repeats. If it succeeds, the newly distilled target qubit is kept and combined with four other successes to form a new ensemble, which then rejoins the process of continued purification. By undertaking this process many times, the purity of the magic state increases at each step, gradually moving towards the conditions required for universal, fault-tolerant quantum computing.
Despite being the subject of theoretical exploration over decades, real-time magic state distillation had never been realized on a quantum computer. In typical pioneering style, the Quantinuum and Microsoft team decided to take on this challenge. But before they could get started, they recognized that their toolset would have to be significantly sharpened up.
At the heart of magic state distillation is a highly complex repeating process, which requires state-of-the-art protocols and control flow logic built on a best-in-class programming toolset. The research team turned to Quantum Intermediate Representation (QIR) to simplify and streamline the programming of this complex quantum computing process.
QIR is a is a quantum-specific code representation based on the popular open-sourced classical LLVM intermediate language, with the addition of structures and protocols that support the maturation and modernization of quantum computing. QIR includes elements that are essential in classical computing, but which are yet to be standardized in quantum computing, such as the humble programming loop.
Loops, which often take forms like "for...next" or "do...while," are central to programming, allowing code to repeat instructions in a stepwise manner until a condition is met. In quantum computing, this is a tough challenge because loops require control flow logic and mid-circuit measurement, which are difficult to realize in a quantum computer but have been demonstrated in Quantinuum’s System Model H1-1, Powered by Honeywell. Loops are essential for realizing magic state distillation and it’s well-understood that LLVM is great at optimizing complex control flow, including loops. This made magic state distillation a natural choice for demonstrating a valuable application of QIR and making for a great example of the use of a classical technique in a quantum context.
The team used Quantinuum’s H1-1 quantum computer – benefiting from industry-leading components such as mid-circuit measurement, qubit reuse and feed-forward – to make possible the quantum looping required for a magic state distillation protocol, and becoming the first quantum computing team ever to run a real-time magic state distillation protocol on quantum hardware.
Building on this success, the team designed further experiments to assess the potential of four methods for exploring the use of a quantum protocol called a repeat-until-success (RUS) circuit to achieve a loop process. First, they hard-coded a loop directly into the extended OpenQASM 2.0, a widely used quantum assembly language, but which requires additional overhead to target advanced components on Quantinuum's very versatile H-Series quantum computer. Against this, they compared two alternative methods for coding a loop in a standard high-level programming language: controlled recursion, which was directed through both OpenQASM and through QIR; and a native for loop made possible within QIR.
The results were clear-cut: the hard-coded OpenQASM 2.0 loop performed as well as the theoretical prediction, maintaining high quality results after a number of loops, as did the natively-coded QIR for loop. The two recursive loops saw the quality of their results drop away fast as the loop limit was raised. But in a head-to-head between hard-coded OpenQASM and QIR, which converts high-level source code from many prominent and familiar languages into low-level machine code, QIR won hands-down on the basis of practicality.

Martin Roetteler, Director of Quantum Applications at Microsoft, shared: “This was a very exciting exploration of control flow logic on quantum hardware. In seeking to understand the capabilities of QIR to optimize programming structures on real hardware, we were rewarded with a clear answer, and an important demonstration of the capabilities of QIR.”
In follow-up work, the team is now preparing to run a logical magic state protocol on the H2-1 quantum computer with its 32 high-fidelity qubits, and hopes to become the first group to successfully achieve logical magic state distillation. The features and fidelity offered by the H2 make it one of the best quantum computers currently capable of shooting for such a major milestone on the journey towards fault tolerance, while the current work demonstrates that, in QIR, the necessary control flow logic is now available to achieve it.
The paper discussed in this post was authored by Natalie C. Brown, John P. Campora III, Cassandra Granade, Bettina Heim, Stefan Wernli, Ciaran Ryan-Anderson, Dominic Lucchetti, Adam Paetznick, Martin Roetteler, Krysta Svore and Alex Chernoguzov.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.