Quantinuum accelerates the path to Universal Fully Fault-Tolerant Quantum Computing

Supports Microsoft’s AI and quantum-powered compute platform and “the path to a Quantum Supercomputer”

September 10, 2024

Quantinuum is uniquely known for, and has always put a premium on, demonstrating rather than merely promising breakthroughs in quantum computing. 

When we unveiled the first H-Series quantum computer in 2020, not only did we pioneer the world-leading quantum processors, but we also went the extra mile. We included industry leading comprehensive benchmarking to ensure that any expert could independently verify our results. Since then, our computers have maintained the lead against all competitors in performance and transparency. Today our System Model H2 quantum computer with 56 qubits is the most powerful quantum computer available for industry and scientific research – and the most benchmarked. 

More recently, in a period where we upgraded our H2 system from 32 to 56 qubits and demonstrated the scalability of our QCCD architecture, we also hit a quantum volume of over two million, and announced that we had achieved “three 9’s” fidelity, enabling real gains in fault-tolerance – which we proved within months as we demonstrated the most reliable logical qubits in the world with our partner Microsoft

We don’t just promise what the future might look like; we demonstrate it.

Today, at Quantum World Congress, we shared how recent developments by our integrated hardware and software teams have, yet again, accelerated our technology roadmap. It is with the confidence of what we’ve already demonstrated that we can uniquely announce that by the end of this decade Quantinuum will achieve universal fully fault-tolerant quantum computing, built on foundations such as a universal fault-tolerant gate set, high fidelity physical qubits uniquely capable of supporting reliable logical qubits, and a fully-scalable architecture.

Quantinuum's hardware development roadmap to achieve universal, fully fault-tolerant quantum computing

We also demonstrated, with Microsoft, what rapid acceleration looks like with the creation of 12 highly reliable logical qubits – tripling the number from just a few months ago. Among other demonstrations, we supported Microsoft to create the first ever chemistry simulation using reliable logical qubits combined with Artificial Intelligence (AI) and High-Performance Computing (HPC), producing results within chemical accuracy. This is a critical demonstration of what Microsoft has called “the path to a Quantum Supercomputer”. 

Quantinuum’s H-Series quantum computers, Powered by Honeywell, were among the first devices made available via Microsoft Azure, where they remain available today. Building on this, we are excited to share that Quantinuum and Microsoft have completed integration of Quantinuum’s InQuanto™ computational quantum chemistry software package with Azure Quantum Elements, the AI enabled generative chemistry platform. The integration mentioned above is accessible to customers participating in a private preview of Azure Quantum Elements, which can be requested from Microsoft and Quantinuum.  

We created a short video on the importance of logical qubits, which you can see here:

These demonstrations show that we have the tools to drive progress towards scientific and industrial advantage in the coming years. Together, we’re demonstrating how quantum computing may be applied to some of humanity’s most pressing problems, many of which are likely only to be solved with the combination of key technologies like AI, HPC, and quantum computing. 

Our credible roadmap draws a direct line from today to hundreds of logical qubits - at which point quantum computing, possibly combined with AI and HPC, will outperform classical computing for a range of scientific problems. 

“The collaboration between Quantinuum and Microsoft has established a crucial step forward for the industry and demonstrated a critical milestone on the path to hybrid classical-quantum supercomputing capable of transforming scientific discovery.” – Dr. Krysta Svore – Technical Fellow and VP of Advanced Quantum Development for Microsoft Azure Quantum

What we revealed today underlines the accelerating pace of development. It is now clear that enterprises need to be ready to take advantage of the progress we can see coming in the next business cycle.

Why now?

The industry consensus is that the latter half of this decade will be critical for quantum computing, prompting many companies to develop roadmaps signalling their path toward error corrected qubits. In their entirety, Quantinuum’s technical and scientific advances accelerate the quantum computing industry, and as we have shown today, reveal a path to universal fault-tolerance much earlier than expected.

Grounded in our prior demonstrations, we now have sufficient visibility into an accelerated timeline for a highly credible hardware roadmap, making now the time to release an update. This provides organizations all over the world with a way to plan, reliably, for universal fully fault-tolerant quantum computing. We have shown how we will scale to more physical qubits at fidelities that support lower error rates (made possible by QEC), with the capacity for “universality” at the logical level. “Universality” is non-negotiable when making good on the promise of quantum computing: if your quantum computer isn’t universal everything you do can be efficiently reproduced on a classical computer

“Our proven history of driving technical acceleration, as well as the confidence that globally renowned partners such as Microsoft have in us, means that this is the industry’s most bankable roadmap to universal fully fault-tolerant quantum computing,” said Dr. Raj Hazra, Quantinuum’s CEO.

Where we go from here?

Before the end of the decade, our quantum computers will have thousands of physical qubits, hundreds of logical qubits with error rates less than 10-6, and the full machinery required for universality and fault-tolerance – truly making good on the promise of quantum computing. 

Quantinuum has a proven history of achieving our technical goals. This is evidenced by our leadership in hardware, software, and the ecosystem of developer tools that make quantum computing accessible. Our leadership in quantum volume and fidelity, our consistent cadence of breakthrough publications, and our collaboration with enterprises such as Microsoft, showcases our commitment to pushing the boundaries of what is possible. 

We are now making an even stronger public commitment to deliver on our roadmap, ushering the industry toward the era of universal fully fault-tolerant quantum computing this decade. We have all the machinery in place for fault-tolerance with error rates around 10-6, meaning we will be able to run circuits that are millions of gates deep – putting us on a trajectory for scientific quantum advantage, and beyond. 

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
January 22, 2025
Quantum Computers Will Make AI Better
Today’s LLMs are often impressive by past standards – but they are far from perfect

Quietly, and determinedly since 2019, we’ve been working on Generative Quantum AI. Our early focus on building natively quantum systems for machine learning has benefitted from and been accelerated by access to the world’s most powerful quantum computers, and quantum computers that cannot be classically simulated.

Our work additionally benefits from being very close to our Helios generation quantum computer, built in Colorado, USA. Helios is 1 trillion times more powerful than our H2 System, which is already significantly more advanced than all other quantum computers available.

While tools like ChatGPT have already made a profound impact on society, a critical limitation to their broader industrial and enterprise use has become clear. Classical large language models (LLMs) are computational behemoths, prohibitively huge and expensive to train, and prone to errors that damage their credibility.

Training models like ChatGPT requires processing vast datasets with billions, even trillions, of parameters. This demands immense computational power, often spread across thousands of GPUs or specialized hardware accelerators. The environmental cost is staggering—simply training GPT-3, for instance, consumed nearly 1,300 megawatt-hours of electricity, equivalent to the annual energy use of 130 average U.S. homes.

This doesn’t account for the ongoing operational costs of running these models, which remain high with every query. 

Despite these challenges, the push to develop ever-larger models shows no signs of slowing down.

Enter quantum computing. Quantum technology offers a more sustainable, efficient, and high-performance solution—one that will fundamentally reshape AI, dramatically lowering costs and increasing scalability, while overcoming the limitations of today's classical systems. 

Quantum Natural Language Processing: A New Frontier

At Quantinuum we have been maniacally focused on “rebuilding” machine learning (ML) techniques for Natural Language Processing (NLP) using quantum computers. 

Our research team has worked on translating key innovations in natural language processing — such as word embeddings, recurrent neural networks, and transformers — into the quantum realm. The ultimate goal is not merely to port existing classical techniques onto quantum computers but to reimagine these methods in ways that take full advantage of the unique features of quantum computers.

We have a deep bench working on this. Our Head of AI, Dr. Steve Clark, previously spent 14 years as a faculty member at Oxford and Cambridge, and over 4 years as a Senior Staff Research Scientist at DeepMind in London. He works closely with Dr. Konstantinos Meichanetzidis, who is our Head of Scientific Product Development and who has been working for years at the intersection of quantum many-body physics, quantum computing, theoretical computer science, and artificial intelligence.

A critical element of the team’s approach to this project is avoiding the temptation to simply “copy-paste”, i.e. taking the math from a classical version and directly implementing that on a quantum computer. 

This is motivated by the fact that quantum systems are fundamentally different from classical systems: their ability to leverage quantum phenomena like entanglement and interference ultimately changes the rules of computation. By ensuring these new models are properly mapped onto the quantum architecture, we are best poised to benefit from quantum computing’s unique advantages. 

These advantages are not so far in the future as we once imagined – partially driven by our accelerating pace of development in hardware and quantum error correction.

Making computers “talk”- a short history

The ultimate problem of making a computer understand a human language isn’t unlike trying to learn a new language yourself – you must hear/read/speak lots of examples, memorize lots of rules and their exceptions, memorize words and their meanings, and so on. However, it’s more complicated than that when the “brain” is a computer. Computers naturally speak their native languages very well, where everything from machine code to Python has a meaningful structure and set of rules. 

In contrast, “natural” (human) language is very different from the strict compliance of computer languages: things like idioms confound any sense of structure, humor and poetry play with semantics in creative ways, and the language itself is always evolving. Still, people have been considering this problem since the 1950’s (Turing’s original “test” of intelligence involves the automated interpretation and generation of natural language).

Up until the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing. 

Initial ML approaches were largely “statistical”: by analyzing large amounts of text data, one can identify patterns and probabilities. There were notable successes in translation (like translating French into English), and the birth of the web led to more innovations in learning from and handling big data.

What many consider “modern” NLP was born in the late 2000’s, when expanded compute power and larger datasets enabled practical use of neural networks. Being mathematical models, neural networks are “built” out of the tools of mathematics; specifically linear algebra and calculus. 

Building a neural network, then, means finding ways to manipulate language using the tools of linear algebra and calculus. This means representing words and sentences as vectors and matrices, developing tools to manipulate them, and so on. This is precisely the path that researchers in classical NLP have been following for the past 15 years, and the path that our team is now speedrunning in the quantum case.

Quantum Word Embeddings: A Complex Twist

The first major breakthrough in neural NLP came roughly a decade ago, when vector representations of words were developed, using the frameworks known as Word2Vec and GloVe (Global Vectors for Word Representation). In a recent paper, our team, including Carys Harvey and Douglas Brown, demonstrated how to do this in quantum NLP models – with a crucial twist. Instead of embedding words as real-valued vectors (as in the classical case), the team built it to work with complex-valued vectors.

In quantum mechanics, the state of a physical system is represented by a vector residing in a complex vector space, called a Hilbert space. By embedding words as complex vectors, we are able to map language into parameterized quantum circuits, and ultimately the qubits in our processor. This is a major advance that was largely under appreciated by the AI community but which is now rapidly gaining interest.

Using complex-valued word embeddings for QNLP means that from the bottom-up we are working with something fundamentally different. This different “geometry” may provide advantage in any number of areas: natural language has a rich probabilistic and hierarchical structure that may very well benefit from the richer representation of complex numbers.

The Quantum Recurrent Neural Network (RNN)

Another breakthrough comes from the development of quantum recurrent neural networks (RNNs). RNNs are commonly used in classical NLP to handle tasks such as text classification and language modeling. 

Our team, including Dr. Wenduan Xu, Douglas Brown, and Dr. Gabriel Matos, implemented a quantum version of the RNN using parameterized quantum circuits (PQCs). PQCs allow for hybrid quantum-classical computation, where quantum circuits process information and classical computers optimize the parameters controlling the quantum system.

In a recent experiment, the team used their quantum RNN to perform a standard NLP task: classifying movie reviews from Rotten Tomatoes as positive or negative. Remarkably, the quantum RNN performed as well as classical RNNs, GRUs, and LSTMs, using only four qubits. This result is notable for two reasons: it shows that quantum models can achieve competitive performance using a much smaller vector space, and it demonstrates the potential for significant energy savings in the future of AI.

In a similar experiment, our team partnered with Amgen to use PQCs for peptide classification, which is a standard task in computational biology. Working on the Quantinuum System Model H1, the joint team performed sequence classification (used in the design of therapeutic proteins), and they found competitive performance with classical baselines of a similar scale. This work was our first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins, and helped us to elucidate the route toward larger-scale applications in this and related fields, in line with our hardware development roadmap.

Quantum Transformers - The Next Big Leap

Transformers, the architecture behind models like GPT-3, have revolutionized NLP by enabling massive parallelism and state-of-the-art performance in tasks such as language modeling and translation. However, transformers are designed to take advantage of the parallelism provided by GPUs, something quantum computers do not yet do in the same way.

In response, our team, including Nikhil Khatri and Dr. Gabriel Matos, introduced “Quixer”, a quantum transformer model tailored specifically for quantum architectures. 

By using quantum algorithmic primitives, Quixer is optimized for quantum hardware, making it highly qubit efficient. In a recent study, the team applied Quixer to a realistic language modeling task and achieved results competitive with classical transformer models trained on the same data. 

This is an incredible milestone achievement in and of itself. 

This paper also marks the first quantum machine learning model applied to language on a realistic rather than toy dataset. 

This is a truly exciting advance for anyone interested in the union of quantum computing and artificial intelligence, and is in danger of being lost in the increased ‘noise’ from the quantum computing sector where organizations who are trying to raise capital will try to highlight somewhat trivial advances that are often duplicative.

Quantum Tensor Networks. A Scalable Approach

Carys Harvey and Richie Yeung from Quantinuum in the UK worked with a broader team that explored the use of quantum tensor networks for NLP. Tensor networks are mathematical structures that efficiently represent high-dimensional data, and they have found applications in everything from quantum physics to image recognition. In the context of NLP, tensor networks can be used to perform tasks like sequence classification, where the goal is to classify sequences of words or symbols based on their meaning.

The team performed experiments on our System Model H1, finding comparable performance to classical baselines. This marked the first time a scalable NLP model was run on quantum hardware – a remarkable advance. 

The tree-like structure of quantum tensor models lends itself incredibly well to specific features inherent to our architecture such as mid-circuit measurement and qubit re-use, allowing us to squeeze big problems onto few qubits.

Since quantum theory is inherently described by tensor networks, this is another example of how fundamentally different quantum machine learning approaches can look – again, there is a sort of “intuitive” mapping of the tensor networks used to describe the NLP problem onto the tensor networks used to describe the operation of our quantum processors.

What we’ve learned so far

While it is still very early days, we have good indications that running AI on quantum hardware will be more energy efficient. 

We recently published a result in “random circuit sampling”, a task used to compare quantum to classical computers. We beat the classical supercomputer in time to solution as well as energy use – our quantum computer cost 30,000x less energy to complete the task than Frontier, the classical supercomputer we compared against. 

We may see, as our quantum AI models grow in power and size, that there is a similar scaling in energy use: it’s generally more efficient to use ~100 qubits than it is to use ~10^18 classical bits.

Another major insight so far is that quantum models tend to require significantly fewer parameters to train than their classical counterparts. In classical machine learning, particularly in large neural networks, the number of parameters can grow into the billions, leading to massive computational demands. 

Quantum models, by contrast, leverage the unique properties of quantum mechanics to achieve comparable performance with a much smaller number of parameters. This could drastically reduce the energy and computational resources required to run these models.

The Path Ahead

As quantum computing hardware continues to improve, quantum AI models may increasingly complement or even replace classical systems. By leveraging quantum superposition, entanglement, and interference, these models offer the potential for significant reductions in both computational cost and energy consumption. With fewer parameters required, quantum models could make AI more sustainable, tackling one of the biggest challenges facing the industry today.

The work being done by Quantinuum reflects the start of the next chapter in AI, and one that is transformative. As quantum computing matures, its integration with AI has the potential to unlock entirely new approaches that are not only more efficient and performant but can also handle the full complexities of natural language. The fact that Quantinuum’s quantum computers are the most advanced in the world, and cannot be simulated classically, gives us a unique glimpse into a future. 

The future of AI now looks very much to be quantum and Quantinuum’s Gen QAI system will usher in the era in which our work will have meaningful societal impact.

technical
All
Blog
December 9, 2024
Q2B 2024: The Roadmap to Quantum Value

At this year’s Q2B Silicon Valley conference from December 10th – 12th in Santa Clara, California, the Quantinuum team will be participating in plenary and case study sessions to showcase our quantum computing technologies. 

Schedule a meeting with us at Q2B

Meet our team at Booth #G9 to discover how Quantinuum is charting the path to universal, fully fault-tolerant quantum computing. 

Join our sessions: 

Tuesday, Dec 10, 10:00 - 10:20am PT

Plenary: Advancements in Fault-Tolerant Quantum Computation: Demonstrations and Results

There is industry-wide consensus on the need for fault-tolerant QPU’s, but demonstrations of these abilities are less common. In this talk, Dr. Hayes will review Quantinuum’s long list of meaningful demonstrations in fault-tolerance, including real-time error correction, a variety of codes from the surface code to exotic qLDPC codes, logical benchmarking, beyond break-even behavior on multiple codes and circuit families.

View the presentation

Wednesday, Dec 11, 4:30 – 4:50pm PT

Keynote: Quantum Tokens: Securing Digital Assets with Quantum Physics

Mitsui’s Deputy General Manager, Quantum Innovation Dept., Corporate Development Div., Koji Naniwada, and Quantinuum’s Head of Cybersecurity, Duncan Jones will deliver a keynote presentation on a case study for quantum in cybersecurity. Together, our organizations demonstrated the first implementation of quantum tokens over a commercial QKD network. Quantum tokens enable three previously incompatible properties: unforgeability guaranteed by physics, fast settlement without centralized validation, and user privacy until redemption. We present results from our successful Tokyo trial using NEC's QKD commercial hardware and discuss potential applications in financial services.

Details on the case study

Wednesday, Dec 11, 5:10 – 6:10pm PT

Quantinuum and Mitsui Sponsored Happy Hour

Join the Quantinuum and Mitsui teams in the expo hall for a networking happy hour. 

events
All