Debunking algorithmic qubits

March 1, 2024
Executive Summary: Quantinuum’s H-Series computers have the highest performance in the industry, verified by multiple widely adopted benchmarks including quantum volume  We demonstrate that an alternative benchmark called algorithmic qubits is deeply flawed, hiding computer performance behind a plurality voting trick and gate compilations that are not widely useful.

Recently a new benchmark called algorithmic qubits (AQ) has started to be confused with quantum volume measurements. Quantum volume (QV) was specifically designed to be hard to “game,” however the algorithmic qubits test turns out to be very susceptible to tricks that can make a quantum computer look much better than it actually is. While it is not clear what can be done to fix the algorithmic qubits test, it is already clear that it is much easier to pass than QV and is a poor substitute for measuring performance. It is also important to note that algorithmic qubits are not the same as logical qubits, which are necessary for full fault-tolerant quantum computing.

Fig. 1: Simulations of the algorithmic qubits (AQ) test with only two-qubit gate errors for two hypothetical machines.  The machines are identical except one has much higher two qubit gate fidelity. The test was run with three different options: (Base) Running the exact circuits as specified by the algorithmic qubits Github repository, (Gate compilation) Running circuits with custom Pytket compiler passes to reduce two-qubit gate counts, and (Gate compilation + plurality voting) Running the compiled circuits and also applying plurality voting error mitigation with voting over 25 random variants each with 100 shots. Note that the quantum volume (QV) of the machines most closely tracks to the “base” case without compilation and plurality voting, but even that base case of AQ can overestimate the QV of the machine.  

To make this point clear, we simulated what algorithmic qubits data would look like for two machines, one clearly much higher performing than the other. We applied two tricks that are typically used when sharing algorithmic qubits results: gate compilation and error mitigation with plurality voting. From the data above, you can see how these tricks are misleading without further information. For example, if you compare data from the higher fidelity machine without any compilation or plurality voting (bottom left) to data from the inferior machine with both tricks (top right) you may incorrectly believe the inferior machine is performing better. Unfortunately, this inaccurate and misleading comparison has been made in the past.  It is important to note that algorithmic qubits uses a subset of algorithms from a QED-C paper that introduced a suite of application oriented tests and created a repository to test available quantum computers.  Importantly, that work explicitly forbids the compilation and error mitigation techniques that are causing the issue here.

As a demonstration of the perils of AQ as a benchmark, we look at data obtained on both Quantinuum’s H2-1 system as well as publicly available data from IonQ’s Forte system.

Fig. 2: Algorithmic qubit data with gate compilation but without plurality voting error mitigation.  Data from smaller qubit and gate counts was omitted from the Quantinuum data as those points do not tend to influence the AQ score.  H2-1 has a measured quantum volume of 216.  Based on this publicly available data from Forte, combined with the AQ simulation data above, we estimate the Forte quantum volume is around 25, although spread in qubit fidelities and details of circuit compilation could skew this estimate.

We reproduce data without any error mitigation from IonQ’s publicly released data in association with a preprint posted to the arXiv, and compare it to data taken on our H2-1 device. Without error mitigation, IonQ Forte achieves an AQ score of 9, whereas Quantinuum H2-1 achieves AQ of 26. Here you can clearly see improved circuit fidelities on the H2-1 device, as one would expect from the higher reported 2Q gate fidelities (average 99.816(5)% for Quantinuum’s H2-1 vs 99.35% for IonQ’s Forte). However, after you apply error mitigation, in this case plurality voting, to both sets of data the picture changes substantially, hiding each underlying computer’s true capabilities.

Fig. 3: Algorithmic qubit data with gate compilation and plurality voting error mitigation. For the H2-1 data plurality voting is done over 25 variants each with 20 shots for every test and qubit number. For Forte it is not clear to us exactly what plurality voting strategy was employed.

Here the H2-1 algorithmic performance still exceeds Forte (from the publicly released data), but the perceived gap has been reduced by error mitigation.  

“Error mitigation, including plurality voting, may be a useful tool for some near-term quantum computing but it doesn’t work for every problem and it’s unlikely to be scalable to larger systems. In order to achieve the lofty goals of quantum computing we’ll need serious device performance upgrades. If we allow error mitigation in benchmarking it will conflate the error mitigation with the underlying device performance. This will make it hard for users to appreciate actual device improvements that translate to all applications and larger problems,” explained Dr. Charlie Baldwin, a leader in Quantinuum’s benchmarking efforts.

There are other issues with the algorithmic qubits test. The circuits used in the test can be reduced to very easy-to-run circuits with basic quantum circuit compilation that are freely available in packages like pytket. For example, the largest phase estimation and amplitude estimation tests required to pass AQ=32 are specified with 992 and 868 entangling gates respectively but applying pytket optimization reduces the circuits to 141 and 72 entangling gates. This is only possible due to choices in constructing the benchmarks and will not be universally available when using the algorithms in applications. Since AQ reports the precompiled gate counts this also may lead users to expect a machine to be able to run many more entangling gates than what is actually possible on the benchmarked hardware.

What makes a good quantum benchmark? Quantum benchmarking is extremely useful in charting the hardware progress and providing roadmaps for future development. However, quantum benchmarking is an evolving field that is still an open area of research. At Quantinuum we believe in testing the limits of our machine with a variety of different benchmarks to learn as much as possible about the errors present in our system and how they affect different circuits. We are open to working with the larger community on refining benchmarks and creating new ones as the field evolves.

To learn more about the Algorithmic Qubits benchmark and the issues with it, please watch this video where Dr. Charlie Baldwin walks us through the details, starting at 32:40.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
October 30, 2025
Scalable Quantum Error Detection

Typically, Quantum Error Detection (QED) is viewed as a short-term solution—a non-scalable, stop-gap until full fault tolerance is achieved at scale.

That’s just changed, thanks to a serendipitous discovery made by our team. Now, QED can be used in a much wider context than previously thought. Our team made this discovery while studying the contact process, which describes things like how diseases spread or how water permeates porous materials. In particular, our team was studying the quantum contact process (QCP), a problem they had tackled before, which helps physicists understand things like phase transitions. In the process (pun intended), they came across what senior advanced physicist, Eli Chertkov, described as “a surprising result.”

While examining the problem, the team realized that they could convert detected errors due to noisy hardware into random resets, a key part of the QCP, thus avoiding the exponentially costly overhead of post-selection normally expected in QED.

To understand this better, the team developed a new protocol in which the encoded, or logical, quantum circuit adapts to the noise generated by the quantum computer. They quickly realized that this method could be used to explore other classes of random circuits similar to the ones they were already studying.

The team put it all together on System Model H2 to run a complex simulation, and were surprised to find that they were able to achieve near break-even results, where the logically encoded circuit performed as well as its physical analog, thanks to their clever application of QED.  Ultimately, this new protocol will allow QED codes to be used in a scalable way, saving considerable computational resources compared to full quantum error correction (QEC).

Researchers at the crossroads of quantum information, quantum simulation, and many-body physics will take interest in this protocol and use it as a springboard for inventing new use cases for QED.

Stay tuned for more, our team always has new tricks up their sleeves.

Learn mode about System Model H2 with this video:

technical
All
Blog
October 23, 2025
Mapping the Hunt for Quantum Advantage

By Konstantinos Meichanetzidis

When will quantum computers outperform classical ones?

This question has hovered over the field for decades, shaping billion-dollar investments and driving scientific debate.

The question has more meaning in context, as the answer depends on the problem at hand. We already have estimates of the quantum computing resources needed for Shor’s algorithm, which has a superpolynomial advantage for integer factoring over the best-known classical methods, threatening cryptographic protocols. Quantum simulation allows one to glean insights into exotic materials and chemical processes that classical machines struggle to capture, especially when strong correlations are present. But even within these examples, estimates change surprisingly often, carving years off expected timelines. And outside these famous cases, the map to quantum advantage is surprisingly hazy.

Researchers at Quantinuum have taken a fresh step toward drawing this map. In a new theoretical framework, Harry Buhrman, Niklas Galke, and Konstantinos Meichanetzidis introduce the concept of “queasy instances” (quantum easy) – problem instances that are comparatively easy for quantum computers but appear difficult for classical ones.

From Problem Classes to Problem Instances

Traditionally, computer scientists classify problems according to their worst-case difficulty. Consider the problem of Boolean satisfiability, or SAT, where one is given a set of variables (each can be assigned a 0 or a 1) and a set of constraints and must decide whether there exists a variable assignment that satisfies all the constraints. SAT is a canonical NP-complete problem, and so in the worst case, both classical and quantum algorithms are expected to perform badly, which means that the runtime scales exponentially with the number of variables. On the other hand, factoring is believed to be easier for quantum computers than for classical ones. But real-world computing doesn’t deal only in worst cases. Some instances of SAT are trivial; others are nightmares. The same is true for optimization problems in finance, chemistry, or logistics. What if quantum computers have an advantage not across all instances, but only for specific “pockets” of hard instances? This could be very valuable, but worst-case analysis is oblivious to this and declares that there is no quantum advantage.

To make that idea precise, the researchers turned to a tool from theoretical computer science: Kolmogorov complexity. This is a way of measuring how “regular” a string of bits is, based on the length of the shortest program that generates it. A simple string like 0000000000 can be described by a tiny program (“print ten zeros”), while the description of a program that generates a random string exhibiting no pattern is as long as the string itself. From there, the notion of instance complexity was developed: instead of asking “how hard is it to describe this string?”, we ask “how hard is it to solve this particular problem instance (represented by a string)?” For a given SAT formula, for example, its polynomial-time instance complexity is the size of the smallest program that runs in polynomial time and decides whether the formula is satisfiable. This smallest program must be consistently answering all other instances, and it is also allowed to declare “I don’t know”.

In their new work, the team extends this idea into the quantum realm by defining polynomial-time quantum instance complexity as the size of the shortest quantum program that solves a given instance and runs on polynomial time. This makes it possible to directly compare quantum and classical effort, in terms of program description length, on the very same problem instance. If the quantum description is significantly shorter than the classical one, that problem instance is one the researchers call “queasy”: quantum-easy and classically hard. These queasy instances are the precise places where quantum computers offer a provable advantage – and one that may be overlooked under a worst-case analysis.

Why “Queasy”?

The playful name captures the imbalance between classical and quantum effort. A queasy instance is one that makes classical algorithms struggle, i.e. their shortest descriptions of efficient programs that decide them are long and unwieldy, while a quantum computer can handle the same instance with a much simpler, faster, and shorter program. In other words, these instances make classical computers “queasy,” while quantum ones solve them efficiently and finding them quantum-easy. The key point of these definitions lies in demonstrating that they yield reasonable results for well-known optimisation problems.

By carefully analysing a mapping from the problem of integer factoring to SAT (which is possible because factoring is inside NP and SAT is NP-complete) the researchers prove that there exist infinitely many queasy SAT instances. SAT is one of the most central and well-studied problems in computer science that finds numerous applications in the real-world. The significant realisation that this theoretical framework highlights is that SAT is not expected to yield a blanket quantum advantage, but within it lie islands of queasiness – special cases where quantum algorithms decisively win.

Algorithmic Utility

Finding a queasy instance is exciting in itself, but there is more to this story. Surprisingly, within the new framework it is demonstrated that when a quantum algorithm solves a queasy instance, it does much more than solve that single case. Because the program that solves it is so compact, the same program can provably solve an exponentially large set of other instances, as well. Interestingly, the size of this set depends exponentially on the queasiness of the instance!

Think of it like discovering a special shortcut through a maze. Once you’ve found the trick, it doesn’t just solve that one path, but reveals a pattern that helps you solve many other similarly built mazes, too (even if not optimally). This property is called algorithmic utility, and it means that queasy instances are not isolated curiosities. Each one can open a doorway to a whole corridor with other doors, behind which quantum advantage might lie.

A North Star for the Field

Queasy instances are more than a mathematical curiosity; this is a new framework that provides a language for quantum advantage. Even though the quantities defined in the paper are theoretical, involving Turing machines and viewing programs as abstract bitstrings, they can be approximated in practice by taking an experimental and engineering approach. This work serves as a foundation for pursuing quantum advantage by targeting problem instances and proving that in principle this can be a fruitful endeavour.

The researchers see a parallel with the rise of machine learning. The idea of neural networks existed for decades along with small scale analogue and digital implementations, but only when GPUs enabled large-scale trial and error did they explode into practical use. Quantum computing, they suggest, is on the cusp of its own heuristic era. “Quristics” will be prominent in finding queasy instances, which have the right structure so that classical methods struggle but quantum algorithms can exploit, to eventually arrive at solutions to typical real-world problems. After all, quantum computing is well-suited for small-data big-compute problems, and our framework employs the concepts to quantify that; instance complexity captures both their size and the amount of compute required to solve them.

Most importantly, queasy instances shift the conversation. Instead of asking the broad question of when quantum computers will surpass classical ones, we can now rigorously ask where they do. The queasy framework provides a language and a compass for navigating the rugged and jagged computational landscape, pointing researchers, engineers, and industries toward quantum advantage.

technical
All
Blog
September 15, 2025
Quantum World Congress 2025

From September 16th – 18th, Quantum World Congress (QWC) brought together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

Quantinuum is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. With our quantum experts were on site, we showcased the latest on Quantinuum Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Highlights from QWC

Dr. Patty Lee Named the Industry Pioneer in Quantum

The Quantum Leadership Awards celebrate visionaries transforming quantum science into global impact. This year at QWC, Dr. Patty Lee, our Chief Scientist for Hardware Technology Development, was named the Industry Pioneer in Quantum! This honor celebrates her more than two decades of leadership in quantum computing and her pivotal role advancing the world’s leading trapped-ion systems. Watch the Award Ceremony here.

Keynote with Quantinuum's CEO, Dr. Rajeeb Hazra

At QWC 2024, Quantinuum’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, Raj shared the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and exciting insights on what’s to come from Quantinuum. Access the full session here.

Panel Session: Policy Priorities for Responsible Quantum and AI

As part of the Track Sessions on Government & Security, Quantinuum’s Director of Government Relations, Ryan McKenney, discussed “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat: Establishing a Pro-Innovation Regulatory Framework

During the Track Session on Industry Advancement, Quantinuum’s Chief Legal Officer, Kaniah Konkoly-Thege, and Director of Government Relations, Ryan McKenney, discussed the importance of “Establishing a Pro-Innovation Regulatory Framework”.

events
All