Quantinuum is excited to announce the release of InQuanto™ v4.0, the latest version of our advanced quantum computational chemistry software. This update introduces new features and significant performance improvements, designed to help both industry and academic researchers accelerate their computational chemistry work.
If you're new to InQuanto or want to learn more about how to use it, we encourage you to explore our documentation.
InQuanto v4.0 is being released alongside Quantinuum Nexus, our cloud-based platform for quantum software. Users with Nexus access can leverage the `inquanto-nexus` extension to, for example, take advantage of multiple available backends and seamless cloud storage.
In addition, InQuanto v4.0 introduces enhancements that allow users to run larger chemical simulations on quantum computers. Systems can be easily imported from classical codes using the widely supported FCIDUMP file format. These fermionic representations are then efficiently mapped to qubit representations, benefiting from performance improvements in InQuanto operators. For systems too large for quantum hardware experiments, users can now utilize the new `inquanto-cutensornet` extension to run simulations via tensor networks.
These updates enable users to compile and execute larger quantum circuits with greater ease, while accessing powerful compute resources through Nexus.
InQuanto v4.0 is fully integrated with Quantinuum Nexus via the `inquanto-nexus` extension. This integration allows users to easily run experiments across a range of quantum backends, from simulators to hardware, and access results stored in Nexus cloud storage.
Results can be annotated for better searchability and seamlessly shared with others. Nexus also offers the Nexus Lab, which provides a preconfigured Jupyter environment for compiling circuits and executing jobs. The Lab is set up with InQuanto v4.0 and a full suite of related software, enabling users to get started quickly.
The `inquanto.mappings` submodule has received a significant performance enhancement in InQuanto v4.0. By integrating a set of operator classes written in C++, the team has increased the performance of the module past that of other open-source packages’ equivalent methods.
Like any other Python package, InQuanto can benefit from delegating tasks with high computational overhead to compiled languages such as C++. This prescription has been applied to the qubit encoding functions of the `inquanto.mappings` submodule, in which fermionic operators are mapped to their qubit operator equivalents. One such qubit encoding scheme is the Jordan-Wigner (JW) transformation. With respect to JW encoding as a benchmarking task, the integration of C++ operator classes in InQuanto v4.0 has yielded an execution time speed-up of two and a half times that of open-source competitors (Figure 1).
This is a substantial increase in performance that all users will benefit from. InQuanto users will still interact with the familiar Python classes such as `FermionOperator` and `QubitOperator` in v4.0. However, when the `mappings` module is called, the Python operator objects are converted to C++ equivalents and vice versa before and after the qubit encoding procedure (Figure 2). With future total integration of C++ operator classes, we can remove the conversion step and push the performance of the `mappings` module further. Tests, once again using the JW mappings scheme, show a 40 times execution time speed-up as compared to open-source competitors (Figure 1).
Efficient classical pre-processing implementations such as this are a crucial step on the path to quantum advantage. As the number of physical qubits available on quantum computers increases, so will the size and complexity of the physical systems that can be simulated. To support this hardware upscaling, computational bottlenecks including those associated with the classical manipulation of operator objects must be alleviated. Aside from keeping pace with hardware advancements, it is important to enlarge the tractable system size in situations that do not involve quantum circuit execution, such as tensor network circuit simulation and resource estimation.
Users with access to GPU capabilities can now take advantage of tensor networks to accelerate simulations in InQuanto v4.0. This is made possible by the `inquanto-cutensornet` extension, which interfaces InQuanto with the NVIDIA® cuTensorNet library. The `inquanto-cutensornet` extension leverages the `pytket-cutensornet` library, which facilitates the conversion of `pytket` circuits into tensor networks to be evaluated using the NVIDIA® cuTensorNet library. This extension increases the size limit of circuits that can be simulated for chemistry applications. Future work will seek to integrate this functionality with our Nexus platform, allowing InQuanto users to employ the extension without requiring access to their own local GPU resources.
Here we demonstrate the use of the `CuTensorNetProtocol` passed to a VQE experiment. For the sake of brevity, we use the `get_system` method of `inquanto.express` to swiftly define the system, in this case H2 using the STO-3G basis-set.
from inquanto.algorithms import AlgorithmVQE
from inquanto.ansatzes import FermionSpaceAnsatzUCCD
from inquanto.computables import ExpectationValue, ExpectationValueDerivative
from inquanto.express import get_system
from inquanto.mappings import QubitMappingJordanWigner
from inquanto.minimizers import MinimizerScipy
from inquanto.extensions.cutensornet import CuTensorNetProtocol
fermion_hamiltonian, space, state = get_system("h2_sto3g.h5")
qubit_hamiltonian = fermion_hamiltonian.qubit_encode()
ansatz = FermionSpaceAnsatzUCCD(space, state, QubitMappingJordanWigner())
expectation_value = ExpectationValue(ansatz, qubit_hamiltonian)
gradient_expression = ExpectationValueDerivative(
ansatz, qubit_hamiltonian, ansatz.free_symbols_ordered()
)
protocol_tn = CuTensorNetProtocol()
vqe_tn = (
AlgorithmVQE(
objective_expression=expectation_value,
gradient_expression=gradient_expression,
minimizer=MinimizerScipy(),
initial_parameters=ansatz.state_symbols.construct_zeros(),
)
.build(protocol_objective=protocol_tn, protocol_gradient=protocol_tn)
.run()
)
print(vqe_tn.generate_report()["final_value"])
# -1.136846575472054
The inherently modular design of InQuanto allows for the seamless integration of new extensions and functionality. For instance, a user can simply modify existing code using `SparseStatevectorProtocol` to enable GPU acceleration through `inquanto-cutensornet`. It is worth noting that the extension is also compatible with shot-based simulation via the `CuTensorNetShotsBackend` provided by `pytket-cutensornet`.
“Hybrid quantum-classical supercomputing is accelerating quantum computational chemistry research,” said Tim Costa, Senior Director at NVIDIA®. “With Quantinuum’s InQuanto v4.0 platform and NVIDIA’s cuQuantum SDK, InQuanto users now have access to unique tensor-network-based methods, enabling large-scale and high-precision quantum chemistry simulations.”
As demonstrated by our `inquanto-pyscf` extension, we want InQuanto to easily interface with classical codes. In InQuanto v4.0, we have clarified integration with other classical codes such as Gaussian and Psi4. All that is required is an FCIDUMP file, which is a common output file for classical codes. An FCIDUMP file encodes all the one and two electron integrals required to set up a CI Hamiltonian. Users can bring their system from classical codes by passing an FCIDUMP file to the `FCIDumpRestricted` class and calling the `to_ChemistryRestrictedIntegralOperator` method or its unrestricted counterpart, depending on how they wish to treat spin. The resulting InQuanto operator object can be used within their workflow as they usually would.
Users can experiment with TKET’s latest circuit compilation tools in a straightforward manner with InQuanto v4.0. Circuit compilation now only occurs within the `inquanto.protocols` module. This allows users to define which optimization passes to run before and/or after the backend specific defaults, all in one line of code. Circuit compilation is a crucial step in all InQuanto workflows. As such, this structural change allows us to cleanly integrate new functionality through extensions such as `inquanto-nexus` and `inquanto-cutensornet`. Looking forward, beyond InQuanto v4.0, this change is a positive step towards bringing quantum error correction to InQuanto.
InQuanto v4.0 pushes the size of the chemical systems that a user can simulate on quantum computers. Users can import larger, carefully constructed systems from classical codes and encode them to optimized quantum circuits. They can then evaluate these circuits on quantum backends with `inquanto-nexus` or execute them as tensor networks using `inquanto-cutensornet`. We look forward to seeing how our users leverage InQuanto v4.0 to demonstrate the increasing power of quantum computational chemistry. If you are curious about InQuanto and want to read further, our initial release blogpost is very informative or visit the InQuanto website.
If you are interested in trying InQuanto, please request access or a demo at inquanto@quantinuum.com
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.