Join us at ISC24

To discuss integrating quantum computing into your existing compute infrastructure

May 8, 2024

With the rapid evolution of Quantum Computing, users are contemplating the best way to begin to integrate Quantum capabilities into their existing HPC and AI infrastructure. Find our experts at the ISC conference, May 12th-16th, in Hamburg, Germany to discuss our world leading hardware, applications, and case studies. 

Exhibit Hall

Drop by Booth K50 in the exhibit hall to meet tour team and see a display of our System Model H2 chip, Powered by Honeywell. 

If you’d like to schedule a 1:1 meeting, send us an email to schedule a time to meet. We have reserved meeting room Hall 5 at ISC, but we’d be happy to set up time to meet with you at or after the event.

Presentations

Our team will be presenting on a range of topics about integrating quantum computing into existing HPC infrastructure. They’ll be speaking about our hardware features and how you can leverage quantum computing with your existing HPC cluster.

May 13th

2:30pm – 3:00pm | Hall 4, ground level in the First-Time Exhibitor Pitch

Understanding Opportunities with Quantum Computing: Learn about our roadmap and key strategies to accelerate your current HPC clusters with the integration of quantum computing. 

Presented by Nash Palaniswamy, Chief Commercial Officer, Quantinuum

May 14th

2:00pm – 2:30pm | GENCI Booth K40

Simulation of Transition Metal Oxide (TMO) Atomic Layer Deposition (ALD): A Study of the modelling of electronic energies used in the reactions involved for ALD of ZrO2 and of the reactivity of organometallic precursors used in ALD technology for controlling the quality of thin film deposition on different substrates. The study is a collaboration between C12 Quantum Electronics, Air Liquide and Quantinuum, with support from PAQ Ile de France.

Presented by Maud Einhorn, Technical Account Manager, and Gabriela Cimpan, Partner Manager, Quantinuum

May 14th

2:20pm – 2:35pm | Hall Z – 3rd floor

The Trapped-Ion Quantum Processors at Quantinuum: Quantinuum has constructed two generations of QCCD (quantum charge-coupled device) quantum processors. These processors use trapped-ions for qubits and sympathetic cooling, and shuttling operations to achieve high-fidelity gating operations on individual qubits and between any pair of qubits – making them fully-connected. In this talk, Dave will discuss Quantinuum’s efforts to rigorously benchmark the performance of these machines, highlighting their strengths and weaknesses. He’ll also give a brief survey of our efforts toward near-term quantum advantage and quantum error correction. Finally, he’ll sketch out some technological developments aimed at scaling these processors and the implications for future devices.

Presented by David Hayes, Sr. R&D Manager for Theory and Architecture

May 14th and May 15th

12:30pm – 1:00pm | Meeting Room Hall 5

3:30pm – 4:00pm | Meeting Room Hall 5

Quantum Computing, Error Correction, and Scaling for the Future at Quantinuum: Quantum computing promises to provide significant computational savings in valuable problems such as chemistry, materials, and cybersecurity. To make this a reality, errors in quantum operations must be suppressed significantly below where they are today, and the size of quantum computing hardware must be increased. Quantinuum has recently made significant strides in scaling to larger sizes. Join the session to hear about these exciting results, our plans to scale, and a look towards the future.

Presented by Chris Langer, Fellow and Chairman of the Technical Board, Quantinuum

May 16th 

1:00pm – 1:20pm | Hall H, Booth L01 in the HPC Solutions Forum

Harnessing the potential of quantum computing: As the landscape of quantum computing continues to rapidly evolve, the question of when to invest in quantum computing knowledge remains a key strategic consideration for organizations. This talk will explore the challenge of quantum readiness by surveying some of the research collaborations Quantinuum has performed with a range of industry-leading organizations. Using real-world case studies, we will highlight the diverse array of sectors poised to benefit from early quantum adoption, including pharmaceuticals, finance, logistics, and cybersecurity. This talk begins to unpack why many first mover enterprise organizations have made significant investments in quantum readiness already, rather than deferring until the technology matures further. 

Presented by Maud Einhorn, Technical Account Manager, Quantinuum

May 16th

4:30pm – 5:00pm | Hall Y1 - 2nd floor

Workshop on Benchmarking and Scaling the Quantum Charged Coupled Device Quantum Computing architecture in the Quantum and Hybrid Quantum-Classical Computing Approaches: The QCCD architecture provides a unique approach to quantum computing where qubits are mobile and operating zones are fixed. In contrast to QC architectures where qubit and couplings between them are fixed, the QCCD architecture naturally provides all-to-all connectivity and high-fidelity operations. Additional advanced features include mid-circuit measurement, qubit reset, conditional logic, and variable angle gates. The talk will present benchmarking of our machines and recent progress towards scaling to larger systems.

Presented by Chris Langer, Fellow and Chair of the Technical Board, Quantinuum

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!

If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.

The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.

Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.

Why this matters: Quantum AI, born native

This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.

Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.  

Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.

That’s what we’ve built.

What makes Quixer different?

Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.

Quixer is different: it’s not a translation – it's an innovation.

With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.

As quantum computing advances toward fault tolerance, Quixer is built to scale with it.

What’s next for Quixer?

We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.

This is just the beginning.

Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.

This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.

Stay tuned. The revolution is only getting started.

technical
All
Blog
June 9, 2025
Join us at ISC25

Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!

As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.

Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.

  • Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2²³ = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
  • Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by Jülich Research Centre.
  • We’ve laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
  • We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall

From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.

Presentations & Demos

Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.

Multicore World Networking Event

  • Monday, June 9 | 7:00pm – 9:00 PM at Hofbräu Wirtshaus Esplanade
    In partnership with Multicore World, join us for a Quantinuum-sponsored Happy Hour to explore the present and future of quantum computing with Quantinuum CCO, Dr. Nash Palaniswamy, and network with our team.
    Register here

H1 x CUDA-Q Demonstration

  • All Week at Booth B40
    We’re showcasing a live demonstration of NVIDIA’s CUDA-Q platform running on Quantinuum’s industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry.
    Register for a demo

HPC Solutions Forum

  • Wednesday, June 11 | 2:20 – 2:40 PM
    “Enabling Scientific Discovery with Generative Quantum AI” – Presented by Maud Einhorn, Technical Account Executive at Quantinuum, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!

Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.

We look forward to seeing you in Hamburg!

events
All
Blog
May 27, 2025
Teleporting to new heights

Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.

Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.

Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.

Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the Quantinuum's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.

This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.

Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.

This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.

technical
All