Join us at ISC24

To discuss integrating quantum computing into your existing compute infrastructure

May 8, 2024

With the rapid evolution of Quantum Computing, users are contemplating the best way to begin to integrate Quantum capabilities into their existing HPC and AI infrastructure. Find our experts at the ISC conference, May 12th-16th, in Hamburg, Germany to discuss our world leading hardware, applications, and case studies. 

Exhibit Hall

Drop by Booth K50 in the exhibit hall to meet tour team and see a display of our System Model H2 chip, Powered by Honeywell. 

If you’d like to schedule a 1:1 meeting, send us an email to schedule a time to meet. We have reserved meeting room Hall 5 at ISC, but we’d be happy to set up time to meet with you at or after the event.

Presentations

Our team will be presenting on a range of topics about integrating quantum computing into existing HPC infrastructure. They’ll be speaking about our hardware features and how you can leverage quantum computing with your existing HPC cluster.

May 13th

2:30pm – 3:00pm | Hall 4, ground level in the First-Time Exhibitor Pitch

Understanding Opportunities with Quantum Computing: Learn about our roadmap and key strategies to accelerate your current HPC clusters with the integration of quantum computing. 

Presented by Nash Palaniswamy, Chief Commercial Officer, Quantinuum

May 14th

2:00pm – 2:30pm | GENCI Booth K40

Simulation of Transition Metal Oxide (TMO) Atomic Layer Deposition (ALD): A Study of the modelling of electronic energies used in the reactions involved for ALD of ZrO2 and of the reactivity of organometallic precursors used in ALD technology for controlling the quality of thin film deposition on different substrates. The study is a collaboration between C12 Quantum Electronics, Air Liquide and Quantinuum, with support from PAQ Ile de France.

Presented by Maud Einhorn, Technical Account Manager, and Gabriela Cimpan, Partner Manager, Quantinuum

May 14th

2:20pm – 2:35pm | Hall Z – 3rd floor

The Trapped-Ion Quantum Processors at Quantinuum: Quantinuum has constructed two generations of QCCD (quantum charge-coupled device) quantum processors. These processors use trapped-ions for qubits and sympathetic cooling, and shuttling operations to achieve high-fidelity gating operations on individual qubits and between any pair of qubits – making them fully-connected. In this talk, Dave will discuss Quantinuum’s efforts to rigorously benchmark the performance of these machines, highlighting their strengths and weaknesses. He’ll also give a brief survey of our efforts toward near-term quantum advantage and quantum error correction. Finally, he’ll sketch out some technological developments aimed at scaling these processors and the implications for future devices.

Presented by David Hayes, Sr. R&D Manager for Theory and Architecture

May 14th and May 15th

12:30pm – 1:00pm | Meeting Room Hall 5

3:30pm – 4:00pm | Meeting Room Hall 5

Quantum Computing, Error Correction, and Scaling for the Future at Quantinuum: Quantum computing promises to provide significant computational savings in valuable problems such as chemistry, materials, and cybersecurity. To make this a reality, errors in quantum operations must be suppressed significantly below where they are today, and the size of quantum computing hardware must be increased. Quantinuum has recently made significant strides in scaling to larger sizes. Join the session to hear about these exciting results, our plans to scale, and a look towards the future.

Presented by Chris Langer, Fellow and Chairman of the Technical Board, Quantinuum

May 16th 

1:00pm – 1:20pm | Hall H, Booth L01 in the HPC Solutions Forum

Harnessing the potential of quantum computing: As the landscape of quantum computing continues to rapidly evolve, the question of when to invest in quantum computing knowledge remains a key strategic consideration for organizations. This talk will explore the challenge of quantum readiness by surveying some of the research collaborations Quantinuum has performed with a range of industry-leading organizations. Using real-world case studies, we will highlight the diverse array of sectors poised to benefit from early quantum adoption, including pharmaceuticals, finance, logistics, and cybersecurity. This talk begins to unpack why many first mover enterprise organizations have made significant investments in quantum readiness already, rather than deferring until the technology matures further. 

Presented by Maud Einhorn, Technical Account Manager, Quantinuum

May 16th

4:30pm – 5:00pm | Hall Y1 - 2nd floor

Workshop on Benchmarking and Scaling the Quantum Charged Coupled Device Quantum Computing architecture in the Quantum and Hybrid Quantum-Classical Computing Approaches: The QCCD architecture provides a unique approach to quantum computing where qubits are mobile and operating zones are fixed. In contrast to QC architectures where qubit and couplings between them are fixed, the QCCD architecture naturally provides all-to-all connectivity and high-fidelity operations. Additional advanced features include mid-circuit measurement, qubit reset, conditional logic, and variable angle gates. The talk will present benchmarking of our machines and recent progress towards scaling to larger systems.

Presented by Chris Langer, Fellow and Chair of the Technical Board, Quantinuum

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
April 11, 2025
Quantinuum’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.  

Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.  

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes.  Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.  

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a pilot combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.  

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All
Blog
March 28, 2025
Being Useful Now – Quantum Computers and Scientific Discovery

The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.

Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.

Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.

Understanding magnetism

Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.

To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.

As the authors of the paper state:

“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”

Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.  

Gaining material insights

Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.

These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.  

Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.

With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.

technical
All