For more than two decades, there has been a general consensus among physicists pursuing the development of universal, fault-tolerant quantum computers that non-Abelian topological states would offer a promising path to success, if the states could ever be created.
These states host exotic quasi-particles—called anyons—that allow the storage of quantum information in their internal states which can only be changed by "braiding" them around each other in spacetime. Small perturbations in the trajectory of these braids would then leave the topology of the braid unchanged, making this paradigm inherently robust. It is as if they are ‘deaf’ to the noise of a system.
The problem however, is that non-Abelian anyons have never yet been detected, much less controlled.
Until now.
Now, Quantinuum scientists, in collaboration with researchers from Harvard University and Caltech, have turned years of theory regarding topological states into reality, using the unique capabilities of the new H2 trapped-ion processor to create and control non-Abelian anyons. Using a shallow adaptive circuit on the H2, the research team prepared a non-Abelian quantum state on 27 qubits with a fidelity per site exceeding 98.4%.
This demonstration hinges on crucial advances in theory and experiment. On the theory side, Dr. Ruben Verresen, Prof. Ashvin Vishwanath (Harvard) and Dr. Nathanan Tantivasadakarn (Caltech) have shown how to use mid-circuit measurement to significantly simplify the route towards this kind of non-Abelian state. On the experimental side, the increased qubit capacity of the H2 system allows for sufficient complexity to create collective non-Abelian particles, while keeping the extremely low gate and mid-circuit measurement errors of previous generations.
The achievement has set the stage for an accelerated path to fault-tolerant quantum computing while also paving the way for new fields of research within condensed matter physics and high-energy physics.
The paper documenting the research, "Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor," is posted in Nature. This research was one of several papers published at the launch of H2, the next generation in Quantinuum's H-Series quantum computer, Powered by Honeywell.
Quantinuum has been advancing this area of research in “stealth mode” for some considerable time.
Ilyas Khan, Quantinuum’s Chief Product Officer said "I recall vividly discussing topological quantum computing with Henrik 7 years ago during a long hot summer when devices such as our H2 processor were hard to even dream about. This research represents a milestone that benefits the industry as a whole and yet again demonstrates our ability to not only be world leaders today but also long into the future.”
"Topological order is our best shot at creating a quantum computer with very low error rates," Henrik said. "We need to be able to operate on the system while keeping it protected from the environment," he said. "Topological order can offer that protection. This research demonstrates that the more exotic kind of topological state, the non-Abelian kind, can be created with today's devices on-demand and with high fidelity. One of next steps will be to demonstrate stability by repetitive error-correction, utilizing the same ingredients used to prepare the state in the first place."
According to Tony Uttley, President and COO of Quantinuum, this advance represents a breakaway moment for Quantinuum.
"We've reached a point with our technology that we can build a quantum computer on top of a quantum computer," Tony said. "These non-Abelian topological qubits can layer on top of physical qubits without changing how our quantum computer operates. That accomplishment will accelerate our work on the path to fault-tolerant quantum computing."
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.