

It’s believed that quantum computing will transform the way we solve chemistry problems, and the Quantinuum scientific team continues to push the envelope towards making that a reality.
In their latest research paper published on the arXiv, Quantinuum scientists describe a new hybrid classical-quantum solver for chemistry. The method they developed can model complex molecules at a new level of efficiency and precision.
Dr. Michał Krompiec, Scientific Project Manager, and his colleague Dr. David Muñoz Ramo, Head of Quantum Chemistry, co-authored the paper, "Strongly Contracted N-Electron Valence State Perturbation Theory Using Reduced Density Matrices from a Quantum Computer".
The implications are significant as their innovation “tackles one of the biggest bottlenecks in modelling molecules on quantum computers,” according to Dr. Krompiec.
Quantum computers are a natural platform to solve chemistry problems. Chemical molecules are made of many interacting electrons, and quantum mechanics can describe the behavior and energies of these electrons.
As Dr. Krompiec explains, “nature is not classical, it is quantum. We want to map the quantum system of interacting electrons into a quantum system of interacting qubits, and then solve it.”
Solving the full picture of electron interactions is extremely difficult, but fortunately it is not always necessary. Scientists usually simplify the task by focusing on the active space of the molecule, a smaller subset of the problem which matters most.
Even with these simplifications, difficulties remain. One challenge is carefully choosing this smaller subset, which describes strongly correlated electrons and is therefore more complex. Another challenge is accurately solving the rest of the system. Solving the chemistry of the complex subset can often be done from perturbation theory using so-called “multi-reference” methods.
In their work, the Quantinuum team came up with a new multi-reference technique. They maintain that only the strongly correlated part of the molecule should be calculated on a quantum computer. This is important, as this part usually scales exponentially with the size of the molecule, making it classically intractable.
The quantum algorithm they used on this part relied on measuring reduced density matrices and feeding them into a multi-reference perturbation theory calculation, a combination that had never been used in this context. Implementing the quantum electronic structure solver on the active space and using measured reduced density matrices makes the problem less computationally expensive and the solution more accurate.
The team tested their workflow on two molecules - H2 and Li2 – using Quantinuum’s hybrid solver implemented in the InQuanto quantum computational chemistry platform and IBM’s 27-qubit device. Quantinuum software is platform inclusive and is often tested on both its own H Series ion-trap quantum systems as well as others.
The non-strongly correlated regions of the molecules were run classically, as they would not benefit from a quantum speedup. The team’s results showed excellent agreement with previous models, meaning their method worked. Beyond that, the method showed great promise for reaching new levels of speed and accuracy for larger molecules.
The future impact of this work could create a new paradigm to perform quantum chemistry. The authors of the paper believe it may represent the best way of computing dynamic correlation corrections to active space-type quantum methods.
As Dr. Krompiec said, “Quantum chemistry can finally be solved with an application of a quantum solver. This can remove the factorial scaling which limits the applicability of this rigorous method to a very small subsystem.”
The idea to use a multi-reference method along with reduced density matrix measurement is quite novel and stems from the diverse backgrounds of the team at Quantinuum. It is a unique application of well-known quantum algorithms to a set of theoretical quantum chemistry problems.
The use cases are vast. Analysis of catalyst and material properties may first benefit from this new method, which will have a tremendous impact in the automotive, aerospace, fine chemicals, semiconductor, and energy industries.
Implementing this method on real hardware is limited by the current noise levels. But as the quality of the qubits increases, the method will unleash its full potential. Quantinuum’s System Model H1 trapped-ion hardware, Powered by Honeywell, benefits from high fidelity qubits, and will be a valuable resource for quantum chemists wishing to follow this work.
This hybrid quantum-classical method promises a path to quantum advantage for important chemistry problems, as machines become more powerful.
As Dr. Krompiec summarizes, “we haven’t just created a toy model that works for near-term devices. This is a fundamental method that will still be relevant as quantum computers continue to mature.”
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.