

In a meaningful advance in an important area of industrial and real-world relevance, Quantinuum researchers have demonstrated a quantum algorithm capable of solving complex combinatorial optimization problems while making the most of available quantum resources.
Results on the new H2 quantum computer evidenced a remarkable ability to solve combinatorial optimization problems with as few quantum resources as those employed by just one layer of the quantum approximate optimization algorithm (QAOA), the current and traditional workhorse of quantum heuristic algorithms.
Optimization problems are common in industry in contexts such as route planning, scheduling, cost optimization and logistics. However, as the number of variables increases and optimization problems grow larger and more complex, finding satisfactory solutions using classical algorithms becomes increasingly difficult.
Recent research suggests that certain quantum algorithms might be capable of solving combinatorial optimization problems better than classical algorithms. The realization of such quantum algorithms can therefore potentially increase the efficiency of industrial processes.
However, the effectiveness of these algorithms on near-term quantum devices and even on future generations of more capable quantum computers presents a technical challenge: quantum resources will need to be reduced as much as possible in order to protect the quantum algorithm from the unavoidable effects of quantum noise.
Sebastian Leontica and Dr. David Amaro, a senior research scientist at Quantinuum, explain their advances in a new paper, “Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits” published on arXiv. This is one of several papers published at the launch of Quantinuum’s H2, that highlight the unparalleled power of the newest generation of the H-Series, Powered by Honeywell.
“We should strive to use as few quantum resources as possible no matter how good a quantum computer we are operating on, which means using the smallest possible number of qubits that fit within the problem size and a circuit that is as shallow as possible,” Dr. Amaro said. “Our algorithm uses the fewest possible resources and still achieves good performance.”
The researchers use a parameterized instantaneous quantum polynomial (IQP) circuit of the same depth as the 1-layer QAOA to incorporate corrections that would otherwise require multiple layers. Another differentiating feature of the algorithm is that the parameters in the IQP circuit can be efficiently trained on a classical computer, avoiding some training issues of other algorithms like QAOA. Critically, the circuit takes full advantage of, and benefits from features available on Quantinuum’s devices, including parameterized two-qubit gates, all-to-all connectivity, and high-fidelity operations.
“Our numerical simulations and experiments on the new H2 quantum computer at small scale indicate that this heuristic algorithm, compared to 1-layer QAOA, is expected to amplify the probability of sampling good or even optimal solutions of large optimization problems,” Dr. Amaro said. “We now want to understand how the solution quality and runtime of our algorithm compares to the best classical algorithms.”
This algorithm will be useful for current quantum computers as well as larger machines farther along the Quantinuum hardware roadmap.
The goal of this project was to provide a quantum heuristic algorithm for combinatorial optimization that returns better solutions for optimization problems and uses fewer quantum resources than state of the art quantum heuristics. The researchers used a fully connected parameterized IQP, warm-started from 1-layer QAOA. For a problem with n binary variables the circuit contained up to n(n-1)/2 two-qubit gates and the researchers employed only 20.32n shots.
The algorithm showed improved performance on the Sherrington-Kirkpatrick (SK) optimization problem compared to the 1-layer QAOA. Numerical simulations showed an average speed up of 20.31n compared to 20.5n when looking for the optimal solution.
Experimental results on our new H2 quantum computer and emulator confirmed that the new optimization algorithm outperforms 1-layer QAOA and reliably solves complex optimization problems. The optimal solution was found for 136 out of 312 instances, four of which were for the maximum size of 32 qubits. A 30-qubit instance was solved optimally on the H2 device, which means, remarkably, that at least one of the 776 shots measured after performing 432 two-qubit gates corresponds to the unique optimal solution in the huge set of 230 > 109 candidate solutions.
These results indicate that the algorithm, in combination with H2 hardware, is capable of solving hard optimization problems using minimal quantum resources in the presence of real hardware noise.
Quantinuum researchers expect that these promising results at small scale will encourage the further study of new quantum heuristic algorithms at the relevant scale for real-world optimization problems, which requires a better understanding of their performance under realistic conditions.

Numerical simulations of 256 SK random instances for each problem size from 4 to 29 qubits. Graph A shows the probability of sampling the optimal solution in the IQP circuit, for which the average is 2-0.31n. Graph B shows the enhancement factor compared to 1-layer QAOA, for which the average is 20.23n. These results indicate that Quantinuum’s algorithm has significantly better runtime than 1-layer QAOA.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.