Unlocking Quantum Advantage with Complement Sampling

Quantum computing continues to push the boundaries of what is computationally possible.

February 25, 2025

BY HARRY BUHRMAN

Quantum computing continues to push the boundaries of what is computationally possible. A new study by Marcello Benedetti, Harry Buhrman, and Jordi Weggemans introduces Complement Sampling, a problem that highlights a dramatic separation between quantum and classical sample complexity. This work provides a robust demonstration of quantum advantage in a way that is not only provable but also feasible on near-term quantum devices.

The Complement Sampling Problem

Imagine a universe of N = 2n elements, from which a subset S of size K is drawn uniformly at random. The challenge is to sample from the complement without explicitly knowing S, but having access to samples of S. Classically, solving this problem requires roughly K samples, as the best a classical algorithm can do is guess at random after observing only some of the elements of S.

To better understand this, consider a small example. Suppose N = 8, meaning our universe consists of the numbers {0,1,2,3,4,5,6,7}. If a subset S of size K = 4 is drawn at random—say {1,3,5,7}—the goal is to sample from the complement  , which consists of {0,2,4,6}. A classical algorithm would need to collect and verify enough samples from S before it could infer what might be. However, a quantum algorithm can use a single superposition state over S (a quantum sample) to instantly generate a sample from , eliminating the need for iterative searching.

Why This Matters: Quantum Advantage in Sample Complexity

Quantum advantage is often discussed in terms of computational speedups, such as those achieved by Shor’s algorithm for factoring large numbers. However, quantum resources provide advantages beyond time efficiency—they also affect how data is accessed, stored, and processed.

Complement Sampling fits into the category of sample complexity problems, where the goal is to minimize the number of samples needed to solve a problem. The authors prove that their quantum approach not only outperforms classical methods but does so in a way that is:

  • Provable: It provides rigorous lower bounds on classical sample complexity, demonstrating an exponential separation.
  • Verifiable: The correctness of the output of the sampler can be efficiently checked classically.
  • NISQable: The quantum circuit required is shallow and feasible for Noisy Intermediate-Scale Quantum (NISQ) devices.
How the Quantum Algorithm Works

At its core, the quantum approach to Complement Sampling relies on the ability to perform a perfect swap between a subset S and its complement . The method draws inspiration from a construction by Aaronson, Atia, and Susskind, which links state distinguishability to state swapping. The quantum algorithm:

  1. Uses a unitary transformation that maps the quantum sample |S⟩ to |⟩ with high probability.
  2. For K = N/2, the algorithm works perfectly outputting an element from with probability 1.
  3. For other values of K, a probabilistic zero-error approach is used, ensuring correctness while reducing success probability.

This is made possible by quantum interference and superposition, allowing a quantum computer to manipulate distributions in ways that classical systems fundamentally cannot.

Classical Hardness and Cryptographic Implications

A crucial aspect of this work is its robustness. The authors prove that even for subsets generated using strong pseudorandom permutations, the problem remains hard for classical algorithms. This means that classical computers cannot efficiently solve Complement Sampling even with structured input distributions—an important consideration for real-world applications.

This robustness suggests potential applications in cryptography, where generating samples from complements could be useful in privacy-preserving protocols and quantum-secure verification methods.

Towards an Experimental Demonstration

Unlike some quantum advantage demonstrations that are difficult to verify classically (such as the random circuit sampling experiment), Complement Sampling is designed to be verifiable. The authors propose an interactive quantum versus classical game:

  1. A referee provides a quantum player with quantum samples from S.
  2. The player must return a sample from
  3. A classical player, given the same number of classical samples, attempts to do the same.

While the classical player must resort to random guessing, the quantum player can leverage the swap algorithm to succeed with near certainty. Running such an experiment on NISQ hardware could serve as a practical demonstration of quantum advantage in a sample complexity setting.

Future Directions

This research raises exciting new questions:

  • Can Complement Sampling be extended to more general probability distributions?
  • Are there cryptographic protocols that can directly leverage this advantage?
  • How well does the quantum algorithm perform in real-world noisy conditions?

With its blend of theoretical depth and experimental feasibility, Complement Sampling provides a compelling new frontier for demonstrating the power of quantum computing.

Conclusion

Complement Sampling represents one of the cleanest demonstrations of quantum advantage in a practical, verifiable, and NISQ-friendly setting. By leveraging quantum information processing in ways that classical computers fundamentally cannot, this work strengthens the case for near-term quantum technologies and their impact on computational complexity, cryptography, and beyond.

For those interested in the full details, the paper provides rigorous proofs, circuit designs, and further insights into the nature of quantum sample complexity. As quantum computing continues to evolve, Complement Sampling may serve as a cornerstone for future experimental demonstrations of quantum supremacy.

We have commenced work on the experiment – watch this space!

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
April 11, 2025
Quantinuum’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.  

Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.  

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes.  Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.  

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a pilot combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.  

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All
Blog
March 28, 2025
Being Useful Now – Quantum Computers and Scientific Discovery

The most common question in the public discourse around quantum computers has been, “When will they be useful?” We have an answer.

Very recently in Nature we announced a successful demonstration of a quantum computer generating certifiable randomness, a critical underpinning of our modern digital infrastructure. We explained how we will be taking a product to market this year, based on that advance – one that could only be achieved because we have the world’s most powerful quantum computer.

Today, we have made another huge leap in a different domain, providing fresh evidence that our quantum computers are the best in the world. In this case, we have shown that our quantum computers can be a useful tool for advancing scientific discovery.

Understanding magnetism

Our latest paper shows how our quantum computer rivals the best classical approaches in expanding our understanding of magnetism. This provides an entry point that could lead directly to innovations in fields from biochemistry, to defense, to new materials. These are tangible and meaningful advances that will deliver real world impact.

To achieve this, we partnered with researchers from Caltech, Fermioniq, EPFL, and the Technical University of Munich. The team used Quantinuum’s System Model H2 to simulate quantum magnetism at a scale and level of accuracy that pushes the boundaries of what we know to be possible.

As the authors of the paper state:

“We believe the quantum data provided by System Model H2 should be regarded as complementary to classical numerical methods, and is arguably the most convincing standard to which they should be compared.”

Our computer simulated the quantum Ising model, a model for quantum magnetism that describes a set of magnets (physicists call them ‘spins’) on a lattice that can point up or down, and prefer to point the same way as their neighbors. The model is inherently “quantum” because the spins can move between up and down configurations by a process known as “quantum tunneling”.  

Gaining material insights

Researchers have struggled to simulate the dynamics of the Ising model at larger scales due to the enormous computational cost of doing so. Nobel laureate physicist Richard Feynman, who is widely considered to be the progenitor of quantum computing, once said, “it is impossible to represent the results of quantum mechanics with a classical universal device.” When attempting to simulate quantum systems at comparable scales on classical computers, the computational demands can quickly become overwhelming. It is the inherent ‘quantumness’ of these problems that makes them so hard classically, and conversely, so well-suited for quantum computing.

These inherently quantum problems also lie at the heart of many complex and useful material properties. The quantum Ising model is an entry point to confront some of the deepest mysteries in the study of interacting quantum magnets. While rooted in fundamental physics, its relevance extends to wide-ranging commercial and defense applications, including medical test equipment, quantum sensors, and the study of exotic states of matter like superconductivity.  

Instead of tailored demonstrations that claim ‘quantum advantage’ in contrived scenarios, our breakthroughs announced this week prove that we can tackle complex, meaningful scientific questions difficult for classical methods to address. In the work described in this paper, we have proved that quantum computing could be the gold standard for materials simulations. These developments are critical steps toward realizing the potential of quantum computers.

With only 56 qubits in our commercially available System Model H2, the most powerful quantum system in the world today, we are already testing the limits of classical methods, and in some cases, exceeding them. Later this year, we will introduce our massively more powerful 96-qubit Helios system - breaching the boundaries of what until recently was deemed possible.

technical
All