

In a series of recent technical papers, Quantinuum researchers demonstrated the world-leading capabilities of the latest H-Series quantum computers, and the features and tools that make these accessible to our global customers and users.

Our teams used the H-Series quantum computers to directly measure and control non-abelian topological states of matter [1] for the first time, explore new ways to solve combinatorial optimization problems more efficiently [2], simulate molecular systems using logical qubits with error detection [3], probe critical states of matter [4], as well as exhaustively benchmark our very latest system [5].
Part of what makes such rapid technical and scientific progress possible is the effort our teams continually make to develop and improve workflow tools, helping our users to achieve successful results. In this blog post, we will explore the capabilities of three new tools in some detail, discuss their significance, and highlight their impact in recent quantum computing research.
“Leakage” is a quantum error process where a qubit ends up in a state outside the computational subspace and can significantly impact quantum computations. To address this issue, Quantinuum has developed a leakage detection gadget in pyTKET, a python module for interfacing with TKET, our quantum computing toolkit and optimizing compiler. This gadget, presented at the 2022 IEEE International Conference [6], acts as an error detection technique: it detects and excludes results affected by leakage, minimizing its impact on computations. It is also a valuable tool for measuring single-qubit and two-qubit spontaneous emission rates. H-Series users can access this open-source gadget through pyTKET, and an example notebook is available on the pyTKET GitHub repository.
The MCMR package, built as a pyTKET compiler pass, is designed to reduce the number of qubits required for executing many types of quantum algorithms, expanding the scope of what is possible on the current-generation H-Series quantum computers.
As an example, in a recent paper [4], Quantinuum researchers applied this tool to simulate the transverse-field Ising model and used only 20 qubits to simulate a much larger 128 site system (there is more detail below on this work). By measuring qubits early in the circuit, resetting them, and reusing them elsewhere, the package ingests a raw circuit and outputs an optimized circuit that requires fewer quantum resources. Previously, a scientific paper [7] and blog post on MCMR were published highlighting its benefits and applications. H-Series customers can download this package via the Quantinuum user portal.
To enable efficient use of Quantinuum’s 2nd generation processor, the System Model H2, Quantinuum has released the H2-1 emulator to give users greater flexibility with noise-informed state vector emulation. This emulator uses the NVIDIA's cuQuantum SDK to accelerate quantum computing simulation workflows, nearly approaching the limit of full state emulation on conventional classical hardware. The emulator is a faithful representation of the QPU it emulates. This is accomplished by not only using realistic noise models and noise parameters, but also by sharing the same software stack between the QPU and the emulator up until the job is either routed to the QPU or the classical computing processors. Most notable is that the emulator and the QPU use the same compiler allowing subtle and time-dependent errors to be appropriately represented. The H2-1 emulator was initially released as a beta product alongside the System Model H2 quantum computer at launch. It runs on a GPU backend and an upgraded global framework now offering features such as job chunking, incremental resource distribution, mid-execution job cancellation, and partial result return. Detailed information about the emulator can be found in the H2 emulator product datasheet on the Quantinuum website. H-Series customers with an H2 subscription can access the H2-1 emulator via an API or the Microsoft Azure platform.
Quantinuum's new enabling tools have already demonstrated their efficacy and value in recent quantum computing research, playing a vital role in advancing the field and achieving groundbreaking results. Let's expand on some notable recent examples.
All works presented here benefited from having access to our H-Series emulators; of these two significant demonstrations were the “Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor” [1] and “Demonstration of improved 1-layer QAOA with Instantaneous Quantum Polynomial” [2]. These demonstrations involved extensive testing, debugging, and experiment design, for which the versatility of the H2-1 emulator proved invaluable, providing initial performance benchmarks in a realistic noisy environment. Researchers relied on the emulator's results to gauge algorithmic performance and make necessary adjustments. By leveraging the emulator's capabilities, researchers were able to accelerate their progress.
The MCMR package was extensively used in benchmarking the System Model H2 quantum computer’s world-leading capabilities [5]. Two application-level benchmarks performed in this work, approximating the solution to a MaxCut combinatorics problem using the quantum approximate optimization algorithm (QAOA) and accurately simulating a quantum dynamics model using a holographic quantum dynamics (HoloQUADS) algorithm, would have been too large to encode on H2's 32 qubits without the MCMR package. Further illustrating the overall value of these tools, in the HoloQUADS benchmark, there is a "bond qubit" that is particularly susceptible to errors due to leakage. The leakage detection gadget was used on this "bond qubit" at the end of the circuit, and any shots with a detected leakage error were discarded. The leakage detection gadget was also used to obtain the rate of leakage error per single-qubit and two-qubit gates, two component-level benchmarks.
In another scientific work [4], the MCMR compilation tool proved instrumental to simulating a transverse-field Ising model on 128 sites, using 20 qubits. With the MCMR package and by leveraging a state-of-the-art classical tensor-network ansatz expressed as a quantum circuit, the Quantinuum team was able to express the highly entangled ground state of the critical Ising model. The team showed that with H1-1's 20 qubits, the properties of this state could be measured on a 128-site system with very high fidelity, enabling a quantitatively accurate extraction of some critical properties of the model.
At Quantinuum, we are entirely devoted to producing a quantum hardware, middleware and software stack that leads the world on the most important benchmarks and includes features and tools that provide breakthrough benefit to our growing base of users. In today's NISQ hardware, "benefit" usually takes the form of getting the most performance out of today’s hardware, continually pushing what is considered to be possible. In this blog we describe two examples: error detection and discard using the “leakage detection gadget” and an automated method for circuit optimization for qubit reuse. “Benefit” can also take other forms, such as productivity. Our emulator brings many benefits to our users, but one that resonates the most is productivity. Being a faithful representation of our QPU performance, the emulator is an accessible tool which users have at their disposal to develop and test new, innovative algorithms. The tools and features Quantinuum releases are driven by users’ feedback; whether you are new to H-Series or a seasoned user, please reach-out and let us know how we can help bring benefit to your research and use case.
Footnotes:
[1] Mohsin Iqbal et al., Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor (2023), arXiv:2305.03766 [quant-ph]
[2] Sebastian Leontica and David Amaro, Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits (2022), arXiv:2210.05526 [quant-ph]
[3] Kentaro Yamamoto, Samuel Duffield, Yuta Kikuchi, and David Muñoz Ramo, Demonstrating Bayesian Quantum Phase Estimation with Quantum Error Detection (2023), arXiv:2306.16608 [quant-ph]
[4] Reza Haghshenas, et al., Probing critical states of matter on a digital quantum computer (2023),
arXiv:2305.01650 [quant-ph]
[5] S. A. Moses, et al., A Race Track Trapped-Ion Quantum Processor (2023), arXiv:2305.03828 [quant-ph]
[6] K. Mayer, Mitigating qubit leakage errors in quantum circuits with gadgets and post-selection, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, (2022), pp. 809-809, doi: 10.1109/QCE53715.2022.00126.
[7] Matthew DeCross, Eli Chertkov, Megan Kohagen, and Michael Foss-Feig, Qubit-reuse compilation with mid-circuit measurement and reset (2022), arXiv:2210.08039 [quant-ph]
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.