How Quantinuum researchers used quantum tensor networks to measure the properties of quantum particles at a phase transition

Quantum tensor networks demonstrate potential exponential resource reduction in both time and memory for calculation of critical state properties in digital quantum computers

April 9, 2023

When thinking about changes in phases of matter, the first images that come to mind might be ice melting or water boiling. The critical point in these processes is located at the boundary between the two phases – the transition from solid to liquid or from liquid to gas. 

Phase transitions like these get right to the heart of how large material systems behave and are at the frontier of research in condensed matter physics for their ability to provide insights into emergent phenomena like magnetism and topological order. In classical systems, phase transitions are generally driven by thermal fluctuations and occur at finite temperature. On the contrary, quantum systems can exhibit phase transitions even at zero temperatures; the residual fluctuations that control such phase transitions at zero temperature are due to entanglement and are entirely quantum in origin.  

Quantinuum researchers recently used the H1-1 quantum computer to computationally model a group of highly correlated quantum particles at a quantum critical point — on the border of a transition between a paramagnetic state (a state of magnetism characterized by a weak attraction) to a ferromagnetic one (characterized by a strong attraction).

Simulating such a transition on a classical computer is possible using tensor network methods, though it is difficult. However, generalizations of such physics to more complicated systems can pose serious problems to classical tensor network techniques, even when deployed on the most powerful supercomputers.  On a quantum computer, on the other hand, such generalizations will likely only require modest increases in the number and quality of available qubits.

In a technical paper submitted to the arXiv, Probing critical states of matter on a digital quantum computer, the Quantinuum team demonstrated how the powerful components and high fidelity of the H-Series digital quantum computers could be harnessed to tackle a 128-site condensed matter physics problem, combining a quantum tensor network method with qubit reuse to make highly productive use of the 20-qubit H1-1 quantum computer.

Reza Haghshenas, Senior Advanced Physicist, and the lead author the paper said, “This is the kind of problem that appeals to condensed-matter physicists working with quantum computers, who are looking forward to revealing exotic aspects of strongly correlated systems that are still unknown to the classical realm. Digital quantum computers have the potential to become a versatile tool for working scientists, particularly in fields like condensed matter and particle physics, and may open entirely new directions in fundamental research.”

The role of quantum tensor networks
A circular structure with many dots and linesDescription automatically generated
Abstract representation of the 128-site MERA used in this work

Tensor networks are mathematical frameworks whose structure enables them to represent and manipulate quantum states in an efficient manner. Originally associated with the mathematics of quantum mechanics, tensor network methods now crop up in many places, from machine learning to natural language processing, or indeed any model with a large number of interacting, high-dimensional mathematical objects. 

The Quantinuum team described using a tensor network method--the multi-scale entanglement renormalization ansatz (MERA)--to produce accurate estimates for the decay of ferromagnetic correlations and the ground state energy of the system. MERA is particularly well-suited to studying scale invariant quantum states, such as ground states at continuous quantum phase transitions, where each layer in the mathematical model captures entanglement at different scales of distance. 

“By calculating the critical state properties with MERA on a digital quantum computer like the H-Series, we have shown that research teams can program the connectivity and system interactions into the problem,” said Dave Hayes, Lead of the U.S. quantum theory team at Quantinuum and one of the paper’s authors. “So, it can, in principle, go out and simulate any system that you can dream of.”

Simulating a highly entangled quantum spin model

In this experiment, the researchers wanted to accurately calculate the ground state of the quantum system in its critical state. This quantum system is composed of many tiny quantum magnets interacting with one another and pointing in different directions, known as a quantum spin model. In the paramagnetic phase, tiny, individual magnets in the material are randomly oriented, and only correlated with each other over small length-scales. In the ferromagnetic phase, these individual atomic magnetic moments align spontaneously over macroscopic length scales due to strong magnetic interactions. 

In the computational model, the quantum magnets were initially arranged in one dimension, along a line. To describe the critical point in this quantum magnetism problem, particles in the line needed to be entangled with one another in a complex way, making this as a very challenging problem for a classical computer to solve in high dimensional and non-equilibrium systems. 

“That's as hard as it gets for these systems,” Dave explained. “So that's where we want to look for quantum advantage – because we want the problem to be as hard as possible on the classical computer, and then have a quantum computer solve it.”

To improve the results, the team used two error mitigation techniques, symmetry-based error heralding, which is made possible by the MERA structure, and zero-noise extrapolation, a method originally developed by researchers at IBM. The first involved enforcing local symmetry in the model so that errors affecting the symmetry of the state could be detected. The second strategy, zero-noise extrapolation, involves adding noise to the qubits to measure the impact it has, and then using those results to extrapolate the results that would be expected under conditions with less noise than was present in the experiment.

Future applications

The Quantinuum team describes this sort of problem as a stepping-stone, which allows the researchers to explore quantum tensor network methods on today’s devices and compare them either to simulations or analytical results produced using classical computers. It is a chance to learn how to tackle a problem really well before quantum computers scale up in the future and begin to offer solutions that are not possible to achieve on classical computers. 

“Potentially, our biggest applications over the next couple of years will include studying solid-state systems, physics systems, many-body systems, and modeling them,” said Jenni Strabley, Senior Director of Offering Management at Quantinuum.

The team now looks forward to future work, exploring more complex MERA generalizations to compute the states of 2D and 3D many-body and condensed matter systems on a digital quantum computer – quantum states that are much more difficult to calculate classically. 

The H-Series allows researchers to simulate a much broader range of systems than analog devices as well as to incorporate quantum error mitigation strategies, as demonstrated in the experiment. Plus, Quantinuum’s System Model H2 quantum computer, which was launched earlier this year, should scale this type of simulation beyond what is possible using classical computers.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
July 3, 2025
We’re taking a transformational approach to quantum computing

Our quantum algorithms team has been hard at work exploring solutions to continually optimize our system’s performance. Recently, they’ve invented a novel technique, called the Quantum Paldus Transform (QPT), that can offer significant resource savings in future applications.

The transform takes complex representations and makes them simple, by transforming into a different “basis”. This is like looking at a cube from one angle, then rotating it and seeing just a square, instead. Transformations like this save resources because the more complex your problem looks, the more expensive it is to represent and manipulate on qubits.

You’ve changed

While it might sound like magic, transforms are a commonly used tool in science and engineering. Transforms simplify problems by reshaping them into something that is easier to deal with, or that provides a new perspective on the situation. For example, sound engineers use Fourier transforms every day to look at complex musical pieces in terms of their frequency components. Electrical engineers use Laplace transforms; people who work in image processing use the Abel transform; physicists use the Legendre transform, and so on.

In a new paper outlining the necessary tools to implement the QPT, Dr. Nathan Fitzpatrick and Mr. Jędrzej Burkat explain how the QPT will be widely applicable in quantum computing simulations, spanning areas like molecular chemistry, materials science, and semiconductor physics. The paper also describes how the algorithm can lead to significant resource savings by offering quantum programmers a more efficient way of representing problems on qubits.

Symmetry is key

The efficiency of the QPT stems from its use of one of the most profound findings in the field of physics: that symmetries drive the properties of a system.

While the average person can “appreciate” symmetry, for example in design or aesthetics, physicists understand symmetry as a much more profound element present in the fabric of reality. Symmetries are like the universe’s DNA; they lead to conservation laws, which are the most immutable truths we know.

Back in the 1920’s, when women were largely prohibited from practicing physics, one of the great mathematicians of the century, Emmy Noether, turned her attention to the field when she was tasked with helping Einstein with his work. In her attempt to solve a problem Einstein had encountered, Dr. Noether realized that all the most powerful and fundamental laws of physics, such as “energy can neither be created nor destroyed” are in fact the consequence of a deep simplicity – symmetry – hiding behind the curtains of reality. Dr. Noether’s theorem would have a profound effect on the trajectory of physics.

In addition to the many direct consequences of Noether’s theorem is a longstanding tradition amongst physicists to treat symmetry thoughtfully. Because of its role in the fabric of our universe, carefully considering the symmetries of a system often leads to invaluable insights.

Einstein, Pauli and Noether walk into a bar...

Many of the systems we are interested in simulating with quantum computers are, at their heart, systems of electrons. Whether we are looking at how electrons move in a paired dance inside superconductors, or how they form orbitals and bonds in a chemical system, the motion of electrons are at the core.

Seven years after Noether published her blockbuster results, Wolfgang Pauli made waves when he published the work describing his Pauli exclusion principle, which relies heavily on symmetry to explain basic tenets of quantum theory. Pauli’s principle has enormous consequences; for starters, describing how the objects we interact with every day are solid even though atoms are mostly empty space, and outlining the rules of bonds, orbitals, and all of chemistry, among other things.

Symmetry in motion

It is Pauli's symmetry, coupled with a deep respect for the impact of symmetry, that led our team at Quantinuum to the discovery published today.

In their work, they considered the act of designing quantum algorithms, and how one’s design choices may lead to efficiency or inefficiency.

When you design quantum algorithms, there are many choices you can make that affect the final result. Extensive work goes into optimizing each individual step in an algorithm, requiring a cyclical process of determining subroutine improvements, and finally, bringing it all together. The significant cost and time required is a limiting factor in optimizing many algorithms of interest.

This is again where symmetry comes into play. The authors realized that by better exploiting the deepest symmetries of the problem, they could make the entire edifice more efficient, from state preparation to readout. Over the course of a few years, a team lead Dr. Fitzpatrick and his colleague Jędrzej Burkat slowly polished their approach into a full algorithm for performing the QPT.

The QPT functions by using Pauli’s symmetry to discard unimportant details and strip the problem down to its bare essentials. Starting with a Paldus transform allows the algorithm designer to enjoy knock-on effects throughout the entire structure, making it overall more efficient to run.

“It’s amazing to think how something we discovered one hundred years ago is making quantum computing easier and more efficient,” said Dr. Nathan Fitzpatrick.

Ultimately, this innovation will lead to more efficient quantum simulation. Projects we believed to still be many years out can now be realized in the near term.

Transforming the future

The discovery of the Quantum Paldus Transform is a powerful reminder that enduring ideas—like symmetry—continue to shape the frontiers of science. By reaching back into the fundamental principles laid down by pioneers like Noether and Pauli, and combining them with modern quantum algorithm design, Dr. Fitzpatrick and Mr. Burkat have uncovered a tool with the potential to reshape how we approach quantum computation.

As quantum technologies continue their crossover from theoretical promise to practical implementation, innovations like this will be key in unlocking their full potential.

technical
All
Blog
July 2, 2025
Cracking the code of superconductors: Quantum computers just got closer to the dream

In a new paper in Nature Physics, we've made a major breakthrough in one of quantum computing’s most elusive promises: simulating the physics of superconductors. A deeper understanding of superconductivity would have an enormous impact: greater insight could pave the way to real-world advances, like phone batteries that last for months, “lossless” power grids that drastically reduce your bills, or MRI machines that are widely available and cheap to use.  The development of room-temperature superconductors would transform the global economy.

A key promise of quantum computing is that it has a natural advantage when studying inherently quantum systems, like superconductors. In many ways, it is precisely the deeply ‘quantum’ nature of superconductivity that makes it both so transformative and so notoriously difficult to study.

Now, we are pleased to report that we just got a lot closer to that ultimate dream.

Making the impossible possible

To study something like a superconductor with a quantum computer, you need to first “encode” the elements of the system you want to study onto the qubits – in other words, you want to translate the essential features of your material onto the states and gates you will run on the computer.

For superconductors in particular, you want to encode the behavior of particles known as “fermions” (like the familiar electron). Naively simulating fermions using qubits will result in garbage data, because qubits alone lack the key properties that make a fermion so unique.

Until recently, scientists used something called the “Jordan-Wigner” encoding to properly map fermions onto qubits. People have argued that the Jordan-Wigner encoding is one of the main reasons fermionic simulations have not progressed beyond simple one-dimensional chain geometries: it requires too many gates as the system size grows.  

Even worse, the Jordan-Wigner encoding has the nasty property that it is, in a sense, maximally non-fault-tolerant: one error occurring anywhere in the system affects the whole state, which generally leads to an exponential overhead in the number of shots required. Due to this, until now, simulating relevant systems at scale – one of the big promises of quantum computing – has remained a daunting challenge.

Theorists have addressed the issues of the Jordan-Wigner encoding and have suggested alternative fermionic encodings. In practice, however, the circuits created from these alternative encodings come with large overheads and have so far not been practically useful.

We are happy to report that our team developed a new way to compile one of the new, alternative, encodings that dramatically improves both efficiency and accuracy, overcoming the limitations of older approaches. Their new compilation scheme is the most efficient yet, slashing the cost of simulating fermionic hopping by an impressive 42%. On top of that, the team also introduced new, targeted error mitigation techniques that ensure even larger systems can be simulated with far fewer computational "shots"—a critical advantage in quantum computing.

Using their innovative methods, the team was able to simulate the Fermi-Hubbard model—a cornerstone of condensed matter physics— at a previously unattainable scale. By encoding 36 fermionic modes into 48 physical qubits on System Model H2, they achieved the largest quantum simulation of this model to date.

This marks an important milestone in quantum computing: it demonstrates that large-scale simulations of complex quantum systems, like superconductors, are now within reach.

Unlocking the Quantum Age, One Breakthrough at a Time

This breakthrough doesn’t just show how we can push the boundaries of what quantum computers can do; it brings one of the most exciting use cases of quantum computing much closer to reality. With this new approach, scientists can soon begin to simulate materials and systems that were once thought too complex for the most powerful classical computers alone. And in doing so, they’ve unlocked a path to potentially solving one of the most exciting and valuable problems in science and technology: understanding and harnessing the power of superconductivity.

The future of quantum computing—and with it, the future of energy, electronics, and beyond—just got a lot more exciting.

technical
All
Blog
July 1, 2025
Quantinuum with partners Princeton and NIST deliver seminal result in quantum error correction

In an experiment led by Princeton and NIST, we’ve just delivered a crucial result in Quantum Error Correction (QEC), demonstrating key principles of scalable quantum computing developed by Drs Peter Shor, Dorit Aharonov, and Michael Ben-Or. In this latest paper, we showed that by using “concatenated codes” noise can be exponentially suppressed — proving that quantum computing will scale.

When noise is low enough, the results are transformative

Quantum computing is already producing results, but high-profile applications like Shor’s algorithm—which can break RSA encryption—require error rates about a billion times lower than what today’s machines can achieve.

Achieving such low error rates is a holy grail of quantum computing. Peter Shor was the first to hypothesize a way forward, in the form of quantum error correction. Building on his results, Dorit Aharanov and Michael Ben-Or proved that by concatenating quantum error correcting codes, a sufficiently high-quality quantum computer can suppress error rates arbitrarily at the cost of a very modest increase in the required number of qubits.  Without that insight, building a truly fault-tolerant quantum computer would be impossible.

Their results, now widely referred to as the “threshold theorem”, laid the foundation for realizing fault-tolerant quantum computing. At the time, many doubted that the error rates required for large-scale quantum algorithms could ever be achieved in practice. The threshold theorem made clear that large scale quantum computing is a realistic possibility, giving birth to the robust quantum industry that exists today.

Realizing a legendary vision

Until now, nobody has realized the original vision for the threshold theorem. Last year, Google performed a beautiful demonstration of the threshold theorem in a different context (without concatenated codes). This year, we are proud to report the first experimental realization of that seminal work—demonstrating fault-tolerant quantum computing using concatenated codes, just as they envisioned.

The benefits of concatenation

The team demonstrated that their family of protocols achieves high error thresholds—making them easier to implement—while requiring minimal ancilla qubits, meaning lower overall qubit overhead. Remarkably, their protocols are so efficient that fault-tolerant preparation of basis states requires zero ancilla overhead, making the process maximally efficient.

This approach to error correction has the potential to significantly reduce qubit requirements across multiple areas, from state preparation to the broader QEC infrastructure. Additionally, concatenated codes offer greater design flexibility, which makes them especially attractive. Taken together, these advantages suggest that concatenation could provide a faster and more practical path to fault-tolerant quantum computing than popular approaches like the surface code.

We’re always looking forward

From a broader perspective, this achievement highlights the power of collaboration between industry, academia, and national laboratories. Quantinuum’s commercial quantum systems are so stable and reliable that our partners were able to carry out this groundbreaking research remotely—over the cloud—without needing detailed knowledge of the hardware. While we very much look forward to welcoming them to our labs before long, its notable that they never need to step inside to harness the full capabilities of our machines.

As we make quantum computing more accessible, the rate of innovation will only increase. The era of plug-and-play quantum computing has arrived. Are you ready?

technical
All