Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume

April 16, 2024

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management

All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9's” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.

That day has now arrived. Building on several previous laboratory demonstrations 1 2 3, Quantinuum has become the first company ever to achieve “three 9's” in a commercially-available quantum computer, with the first demonstration of 99.914(3)% 2-qubit gate fidelity, showing repeatable performance across all qubit pairs on our H1-1 system that is constantly available to customers. This production-environment announcement is a marked difference to one-offs recorded in carefully contrived laboratory conditions. This demonstrates what will fast become the expected standard for the entire quantum computing sector.

Quantinuum is also announcing another milestone, a seven-figure Quantum Volume (QV) of 1,048,576 – or in terms preferred by the experts, 220 – reinforcing our commitment to building, by a significant margin, the highest-performing quantum computers in the world.

These announcements follow a historic month that started when we proved our ability to scale our systems to the sizes needed to solve some of the world’s most pressing problems – and in a way that offers the best path to universal quantum computing.  

On March 5th, 2024, Quantinuum researchers disclosed details of our experiments that provide a solution to a totemic problem faced by all quantum computing architectures, known as the wiring problem. Supported by a video showing qubits being shuffled through a 2-dimensional grid ion-trap, our team presented concrete proof of the scalability of the quantum charge-coupled device (QCCD) architecture used in our H-Series quantum computers

Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

On April 3rd, 2024 in partnership with Microsoft, our teams announced a breakthrough in quantum error correction that delivered as its crowning achievement the most reliable logical qubits on record.

We revealed detailed demonstrations in an arXiv pre-print paper of the reliability achieved via 4 logical qubits encoded into just 30 physical qubits on our System Model H2 quantum computer. Our joint teams were able to demonstrate logical circuit error rates far below physical circuit error rates, a capability that our full-stack quantum computer is currently the only one in the world with the fidelity required to achieve. 

Explaining the importance of 2-qubit gate fidelity

Reaching this level of physical fidelity is not optional for commercial scale computers – it is essential for error correction to work, and that in turn is a necessary foundation for any useful quantum computer. Our record two-qubit gate fidelity of 99.914(3)% marks a symbolic inflection point for the industry: at ”three 9's” fidelity, we are nearing or surpassing the break-even point (where logical qubits outperform physical qubits) for many quantum error correction protocols, and this will generate great interest among research and industrial teams exploring fault-tolerant methods for tackling real-world problems.

Without hardware fidelity this good, error-corrected calculations are noisier than un-corrected computations. This is why we call it a “threshold” – when gate errors are “above threshold”, quantum computers will remain noisy no matter what you do. Below threshold, you can use quantum error correction to push error rates way, way down, so that quantum computers eventually become as reliable as classical computers.  

Four years ago, Quantinuum claimed that it would improve the performance of its H-Series quantum computers by 10x each year for five years, when measured by the industry’s most widely recognized benchmark, QV (an industry standard not to be confused with less comprehensive metrics such as Algorithmic Qubits). 

Today’s achievement of a 220 QV – which as with all our demonstrations was achieved on our commercially-available machine – shows that our team is living up to this audacious commitment. We are completely confident we can continue to overcome the technical problems that stand in the way of even better fidelity and QV performance. Our QV data is available on GitHub, as are our hardware specifications

The combination of high QV and gate fidelities puts the Quantinuum system in a class by-itself – it is far and away the best of any commercially-available quantum computer.

A diagram of a circuitDescription automatically generated
Figure 1: Quantum Volume (QV) heavy output probability (HOP) as a function of time-ordered circuit index. The solid blue line shows the cumulative average while the green region shows the two-sigma confidence interval based on bootstrap resampling. A QV test is passed when the lower two-sigma confidence interval crosses 2/3.
A graph with numbers and a lineDescription automatically generated
Figure 2. Quantum volume vs time for our commercial systems. Quantinuum’s new world record quantum volume of 1,048,576 maintains our self-imposed goal of a 10-fold increase each year. In fact, in 2023 we achieved an overall increase in quantum volume of >100x.
A graph with a line and numbersDescription automatically generated with medium confidence
Figure 3. Two-qubit randomized benchmarking data from H1-1 across the five gate zones (dashed lines) and average over all five gate zones (solid blue line). The survival probability decays as a function of sequence length, which can be related to the average fidelity of the two-qubit gates with standard randomized benchmarking theory. With this data, we can claim that not only are all zones consistent with 99.9, but all zones are >99.9 outside of error bars.
QCCD: the path to fault tolerance

Additionally, and notably, these benchmarks were achieved “inherently”, without error mitigation, thanks to the H Series’ all-to-all connectivity and QCCD architecture. Full connectivity results in less errors when running large, complicated circuits. While other modalities depend on error mitigation techniques, such techniques are not scalable and present only a modest near-term value. 

Lower physical error and high connectivity means our quantum computers have a provably lower overhead for error-corrected computation.

Looking more deeply, experts look for high fidelities that are valid in all operating zones and between any pair of qubits. In contrast to our competitors, this is precisely what our H Series delivers. We do not suffer from a broad distribution of gate fidelities between different pairs of qubits, meaning that some pairs of qubits have significantly lower fidelities. Quantinuum is the only quantum computing company with all qubit pairs boasting above 99.9% fidelity.

Alongside these benefits and demonstrations of scalability, fidelity, connectivity, and reliability, it is worth noting how these features impact what arguably matters the most to users – time to solution. In the QCCD architecture, speed of operations is decoupled from speed to reach a computational solution thanks to a combination of:

  • a better signal to noise ratio than other modalities
  • drastically reducing or eliminating the number of swap gates required (because we can move our ions through space), and
  • reducing the number of trials required for an accurate result.

The net effect is that for increasingly complex circuits it takes a high-fidelity QCCD-type quantum computer less time to achieve accurate results than other 2D connected or lower-fidelity architectures.

“Getting to three 9’s in the QCCD architecture means that ~1000 entangling operations can be done before an error occurs. Our quantum computers are right at the edge of being able to do computations at the physical level that are beyond the reach of classical computers, which would occur somewhere between 3 nines and 4 nines. Some tasks become hard for classical computers before this regime (e.g. Google’s random circuit sampling problem) but this new regime allows for much less contrived problems to be solved. At that point, these machines become real tools for new discoveries – albeit they will still be limited in what they can probe, likely to be physics simulations or closely related problems,” said Dave Hayes, a Senior R&D manager at Quantinuum.

“Additionally, these fidelities put us, some would say comfortably, within the regime needed to build fault-tolerant machines. These fidelities allow us to start adding more qubits without needing to improve performance further, and to take advantage of quantum error correction to improve the computational power necessary for tackling truly large problems. This scaling problem gets easier with even better fidelities (which is why we’re not satisfied with 3 nines) but it is possible in principle.”

Quantinuum’s new records in fidelity and quantum volume on our commercial H1 device are expected to be achieved on the H2, once upgrades are implemented, underscoring the value that we offer to users for whom stability, reliability and robust performance are pre-requisites. The quantum computing landscape is complex and changing, but we remain at the head of the pack in all key metrics. The relationship with our world-class applications teams means that co-designed devices for solving some of the world’s most intractable problems are a big step closer to reality.

Quantinuum is the world’s leading quantum computing company, and our world-class scientists and engineers are continually driving our technology forward while expanding the possibilities for our users. Their work on applications includes cybersecurity, quantum chemistry, quantum Monte Carlo integration, quantum topological data analysis, condensed matter physics, high energy physics, quantum machine learning, and natural language processing – and we are privileged to support them to bring new solutions to bear on some of the greatest challenges we face.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
August 28, 2025
Quantum Computing Joins the Next Frontier in Genomics
  • The Sanger Institute illustrates the value of quantum computing to genomics research
  • Quantinuum supports developments in a field that promises to deliver a profound and positive societal impact

Twenty-five years ago, scientists accomplished a task likened to a biological moonshot: the sequencing of the entire human genome.

The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.

Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then can now be done in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome – including the availability of a “reference genome” – have aided progress, alongside enormous advances in algorithms and computing power.

But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.

Quantum Challenge: Accepted

The Wellcome Leap Quantum for Bio (Q4Bio) challenge is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.

One consortium – led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University – is taking a leading role.

“The overall goal of the team’s project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences – a task that can go beyond the capabilities of current classical computers” – Wellcome Sanger Institute press release, July 2025
Selecting Quantinuum

Earlier this year, the Sanger Institute selected Quantinuum as a technology partner in their bid to succeed in the Q4Bio challenge.

Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).

In this collaboration, the scientific research team can take advantage of Quantinuum’s full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.

“We were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world’s highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.” – Rajeeb Hazra, President and CEO of Quantinuum
Quantum for Biology

At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing’s readiness for tackling real-world use cases.

Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing earned Fred Sanger his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.

Bacteriophage PhiX174, published under a Creative Commons License https://commons.wikimedia.org/wiki/File:Phi_X_174.png

Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and Quantinuum’s partnership reminds us that we may soon reach an important step forward in human health research – one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.

“Quantum computational biology has long inspired us at Quantinuum, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.” – Ilyas Khan, Founder and Chief Product Officer of Quantinuum

Glossary of terms: Understanding how quantum computing supports complex genomic research


Term Definition
Algorithms
A set of rules or processes for performing calculations or solving computational problems.
Classical Computing Computing technology based on binary information storage (bits represented as 0 or 1).
DNA Sequence The exact order of nucleotides (A, T, C, G) within a DNA molecule.
Genome The complete set of genetic material (DNA) present in an organism.
Graph-based Genome (Sequence Graph) A non-linear network representation of genomic sequences capturing the diversity and relationships among multiple genomes.
High Performance Compute (HPC) Advanced classical computing systems designed for handling computationally intensive tasks, simulations, and data processing.
Pangenome A collection of multiple genome sequences representing genetic diversity within a population or species.
Precision Medicine Tailored medical treatments based on individual genetic, environmental, and lifestyle factors.
Quantinuum The world’s largest quantum computing company, Quantinuum systems lead the world for the rigorous Quantum Volume benchmark and were the first to offer commercial access to highly reliable “Level 2 – resilient” quantum computing.
Quantum Bit (Qubit) Basic unit of quantum information, which unlike classical bits, can exist in multiple states simultaneously (superposition).
Quantum Computing Computing approach using quantum-mechanical phenomena (e.g., superposition, entanglement, interference) for enhanced problem-solving capabilities.
Quantum Pangenomics Interdisciplinary field combining quantum computing with genomics to address computational challenges in analyzing genetic data and pangenomes.
Quantum Volume A specific test of a quantum computer’s performance on complex circuits. The higher the quantum volume the more powerful the system. Quantinuum’s 56-qubit System Model H2 achieved a record quantum volume of 8,388,608 in May 2025.
Quantum Superposition A fundamental quantum phenomenon in which particles can simultaneously exist in multiple states, enabling complex computational tasks.
Sequence Mapping Determining how sequences align or correspond within a larger genomic reference or graph.
Wellcome Leap Quantum for Bio (Q4Bio) Initiative funding research combining quantum computing and biological sciences to address computational challenges.
Wellcome Sanger Institute The Sanger Institute tackles some of the most difficult challenges in genomic research.
partnership
All
Blog
August 26, 2025
IEEE Quantum Week 2025

Every year, The IEEE International Conference on Quantum Computing and Engineering – or IEEE Quantum Week – brings together engineers, scientists, researchers, students, and others to learn about advancements in quantum computing.

This year’s conference from August 31st – September 5th, is being held in Albuquerque, New Mexico, a burgeoning epicenter for quantum technology innovation and the home to our new location that will support ongoing collaborative efforts to advance the photonics technologies critical to furthering our product development.

Throughout IEEE Quantum Week, our quantum experts will be on-site to share insights on upgrades to our hardware, enhancements to our software stack, our path to error correction, and more.

Meet our team at Booth #507 and join the below sessions to discover how Quantinuum is forging the path to fault-tolerant quantum computing with our integrated full-stack.

September 2nd

Quantum Software Workshop
Quantum Software 2.1: Open Problems, New Ideas, and Paths to Scale
1:15 – 2:10pm MDT | Mesilla

We recently shared the details of our new software stack for our next-generation systems, including Helios (launching in 2025). Quantinuum’s Agustín Borgna will deliver a lighting talk to introduce Guppy, our new, open-source programming language based on Python, one of the most popular general-use programming languages for classical computing.

September 3rd

PAN08: Progress and Platforms in the Era of Reliable Quantum Computing
1:00 – 2:30pm MDT | Apache

We are entering the era of reliable quantum computing. Across the industry, quantum hardware and software innovators are enabling this transformation by creating reliable logical qubits and building integrated technology stacks that span the application layer, middleware and hardware. Attendees will hear about current and near-term developments from Microsoft, Quantinuum and Atom Computing. They will also gain insights into challenges and potential solutions from across the ecosystem, learn about Microsoft’s qubit-virtualization system, and get a peek into future developments from Quantinuum and Microsoft.

BOF03: Exploring Distributed Quantum Simulators on Exa-scale HPC Systems
3:00 – 4:30pm MDT | Apache

The core agenda of the session is dedicated to addressing key technical and collaborative challenges in this rapidly evolving field. Discussions will concentrate on innovative algorithm design tailored for HPC environments, the development of sophisticated hybrid frameworks that seamlessly combine classical and quantum computational resources, and the crucial task of establishing robust performance benchmarks on large-scale CPU/GPU HPC infrastructures.

September 4th

PAN11: Real-time Quantum Error Correction: Achievements and Challenges
1:00 – 2:30pm MDT | La Cienega

This panel will explore the current state of real-time quantum error correction, identifying key challenges and opportunities as we move toward large-scale, fault-tolerant systems. Real-time decoding is a multi-layered challenge involving algorithms, software, compilation, and computational hardware that must work in tandem to meet the speed, accuracy, and scalability demands of FTQC. We will examine how these challenges manifest for multi-logical qubit operations, and discuss steps needed to extend the decoding infrastructure from intermediate-scale systems to full-scale quantum processors.

September 5th

Keynote by NVIDIA
8:00 – 9:30am MDT | Kiva Auditorium

During his keynote talk, NVIDIA’s Head of Quantum Computing Product, Sam Stanwyck, will detail our partnership to fast-track commercially scalable quantum supercomputers. Discover how Quantinuum and NVIDIA are pushing the boundaries to deliver on the power of hybrid quantum and classical compute – from integrating NVIDIA’s CUDA-Q Platform with access to Quantinuum’s industry-leading hardware to the recently announced NVIDIA Quantum Research Center (NVAQC).

Featured Research at the IEEE Poster Session:

Visible Photonic Component Development for Trapped-Ion Quantum Computing
Authors: Elliot Lehman, Molly Krogstad, Christopher DeRose and Michael Gehl

Scaling Up Trapped-Ion Quantum Processors with Integrated Photonics
Authors: Molly Andersen, Bryan DeBono, Sara Campbell, Kirk Cook, David Gaudiosi, Christopher Ertsgaard, Azure Hansen, Todd Klein, Molly Krogstad, Elliot Lehman, Gregory MacCabe, Duc Nguyen, Nhung Nguyen, Adam Ollanik, Daniel Ouellette, Brendan Paver, Michael Plascak, Justin Schultz and Johanna Zultak

Research Collaborations with the Local Ecosystem

In a partnership that is part of a long-standing relationship with Los Alamos National Laboratory, we have been working on new methods to make quantum computing operations more efficient, and ultimately, scalable.

Learn more in our Research Paper: Classical shadows with symmetries

Our teams collaborated with Sandia National Laboratories demonstrating our leadership in benchmarking. In this paper, we implemented a technique devised by researchers at Sandia to measure errors in mid-circuit measurement and reset. Understanding these errors helps us to reduce them while helping our customers understand what to expect while using our hardware.

Learn more in our Research Paper: Measuring error rates of mid-circuit measurements

events
All
Blog
August 25, 2025
We’re not just catching up to classical computing, we’re evolving from it

From machine learning to quantum physics, tensor networks have been quietly powering the breakthroughs that will reshape our society. Originally developed by the legendary Nobel laureate Roger Penrose, they were first used to tackle esoteric problems in physics that were previously unsolvable.

Today, tensor networks have become indispensable in a huge number of fields, including both classical and quantum computing, where they are used everywhere from quantum error correction (QEC) decoding to quantum machine learning.

In this latest paper, we teamed up with luminaries from the University of British Columbia, California Institute of Technology, University of Jyväskylä, KBR Inc, NASA, Google Quantum AI, NVIDIA, JPMorgan Chase, the University of Sherbrooke, and Terra Quantum AG to provide a comprehensive overview of the use of tensor networks in quantum computing.

Standing on the shoulders of giants

Part of what drives our leadership in quantum computing is our commitment to building the best scientific team in the world. This is precisely why we hired Dr. Reza Haghshenas, one of the world’s leading experts in tensor networks, and a co-author on the paper.

Dr. Haghshenas has been researching tensor networks for over a decade across both academia and industry. Dr. Haghshenas did postdoctoral work under Professor Garnet Chan at Caltech, a leading figure in the use of tensor networks for quantum physics and chemistry.

“Working with Dr. Garnet Chan at Caltech was a formative experience for me”, remarked Dr. Haghshenas. “While there, I contributed to the development of quantum simulation algorithms and advanced classical methods like tensor networks to help interpret and simulate many-body physics.”

Since joining Quantinuum, Dr. Haghshenas has led projects that bring tensor network methods into direct collaboration with experimental hardware teams — exploring quantum magnetism on real quantum devices and helping demonstrate early signs of quantum advantage. He also contributes to widely used simulation tools like QUIMB, helping the broader research community access these methods.

Dr. Haghshenas’ work sits in a broad and vibrant ecosystem exploring novel uses of tensor networks. Collaborations with researchers like Dr. Chan at Caltech, and NVIDIA have brought GPU-accelerated tools to bear on the forefront of applying tensor networks to quantum chemistry, quantum physics, and quantum computing.

A powerful simulation tool

Of particular interest to those of us in quantum computing, the best methods (that we know of) for simulating quantum computers with classical computers rely on tensor networks. Tensor networks provide a nice way of representing the entanglement in a quantum algorithm and how it spreads, which is crucial but generally quite difficult for classical algorithms. In fact, it’s partly tensor networks’ ability to represent entanglement that makes them so powerful for quantum simulation. Importantly, it is our in-house expertise with tensor networks that makes us confident we are indeed moving past classical capabilities.

A theory of evolution

Tensor networks are not only crucial to cutting-edge simulation techniques.  At Quantinuum, we're working on understanding and implementing quantum versions of classical tensor network algorithms, from quantum matrix product states to holographic simulation methods. In doing this, we are leveraging decades of classical algorithm development to advance quantum computing.

A topic of growing interest is the role of tensor networks in QEC, particularly in a process known as decoding. QEC works by encoding information into an entangled state of multiple qubits and using syndrome measurements to detect errors. These measurements must then be decoded to identify the specific error and determine the appropriate correction. This decoding step is challenging—it must be both fast (within the qubit’s coherence time) and accurate (correctly identifying and fixing errors). Tensor networks are emerging as one of the most effective tools for tackling this task.

Looking forward (and backwards, and sideways...)

Tensor networks are more than just a powerful computational tool — they are a bridge between classical and quantum thinking. As this new paper shows, the community’s understanding of tensor networks has matured into a robust foundation for advancing quantum computing, touching everything from simulation and machine learning to error correction and circuit design.

At Quantinuum, we see this as an evolutionary step, not just in theory, but in practice. By collaborating with top minds across academia and industry, we're charting a path forward that builds on decades of classical progress while embracing the full potential of quantum mechanics. This transition is not only conceptual but algorithmic, advancing how we formulate and implement methods utilizing efficiently both classical and quantum computing. Tensor networks aren’t just helping us keep pace with classical computing; they’re helping us to transcend it.

technical
All