Quantinuum H-Series quantum computer accelerates through 3 more performance records for quantum volume:  217, 218, and 219

Quantinuum H-Series quantum computer accelerates through 3 more performance records for quantum volume: 217, 218, and 219

June 30, 2023

In the last 6 months, Quantinuum H-Series hardware has demonstrated explosive performance improvement. Quantinuum’s System Model H1-1, Powered by Honeywell, has demonstrated going from 214 = 16,384 quantum volume (QV) announced in February 2023 to now 219 = 524,288, with all the details and data released on our GitHub repository for full transparency.  At a quantum volume of 524,288, H1-1 is 1000x higher than the next best reported quantum volume.

Figure 1:  H-series progress quantum volume improvement trajectory

Figure 2:  Heavy output probability for the quantum volume data on H1-1 for (left) 217, (center) 218, and (right) 219

We set a big goal back in 2020 when we launched our first quantum computer, HØ. HØ was launched with six qubits and a quantum volume of 26 = 64, and at that time we made the bold and audacious commitment to increasing the quantum volume of our commercial machines 10x per year for 5 years, equating to a quantum volume of 8,388,608 or 223 by the end of 2025. In an industry that is often accused of being over-hyped, a commitment like this was easy to forget. But we did not forget. Diligently, our scientists and engineers continued to achieve world-record after world-record in a tireless and determined pursuit to systematically improve the overall performance of our quantum computers.   As seen in Figure 1, from 2020 to early 2023, we have steadily been increasing the quantum volume to demonstrate that increased qubit count while reducing errors directly translates to more computational power.  Just within 2023 we’ve had multiple announcements of quantum volume improvements.  In February we announced that H1-1 had leapfrogged 214 and achieved a quantum volume of 215. In May 2023, we launched H2-1 with 32 qubits at a quantum volume of 216.  Now we are thrilled to announce the sequential improvements of 217, 218, and 219, all on H1-1. 

Importantly, none of these results were “hero results”, meaning there are no special calibrations made just to try to make the system look better. Our quantum volume data is taken on our commercial systems interwoven with customer jobs. What we experience is what our customers experience. Instead of improving at 10x per year as we committed back in 2020, the pace of improvement over the past 6 months has been 30x, accelerating at least one year from our 5-year commitment. While these demonstrations were made using H1-1, the similarities in the designs of H1-2 (now upgraded with 20 qubits) and H2-1, our recently released second generation system, make it straightforward to share the improvements from one machine to another and achieve the same results.

In this young and rapidly evolving industry, there are and will be disagreements about which benchmarks are best to use. Quantum volume, developed by IBM, is undeniably rigorous.  Quantum volume can be measured on any gate-based machine. Quantum volume has been peer-reviewed and has well defined assumptions and processes for making the measurements.  Improvements in QV require consistent reductions in errors, making it likely that no matter the application, QV improvements translate to better performance. In fact, to realize the exponential increase in power that quantum computers promise, it is required to continue to reduce these error rates. The average two-qubit gate error with these three new QV demonstrations was 0.13%, the best in the industry.  We measure many benchmarks, but it is for these reasons that we have adopted quantum volume as our primary system-wide benchmark to report our performance. 

Putting aside the argument of which benchmark is better, year-over-year improvements in a rigorous benchmark do not happen accidentally. It can only happen because the dedicated, talented scientists and engineers that work on H-Series hardware have a deep understanding of its error model and a deep understanding of how to reduce the errors to make overall performance improvements. Equally important the talented scientists and engineers have mastery of their domain expertise and can dream-up and then implement the improvements. These validated error models become the bedrock of future systems’ design, instilling confidence that those systems will have well understood error models, and the performance of those systems can also be systematically improved and ultimate performance goals achieved. Taking nothing away from those talented scientists and engineers, but having perfect, identical qubits and employing our quantum charge coupled device (QCCD) architecture does give us an advantage that all the other architectures and other modalities do not have. 

What should potential users of H-Series quantum computers take away from this write-up (and what do current users already know)?

  1. Quantinuum is committed to systematically improving the core performance of our quantum computing hardware. The better the fundamental performance, the lower the overhead will be when doing error mitigation, error detection, and ultimately error correction. This provides confidence in our ability to deliver fault-tolerant compute capabilities.
  2. Progress on your research, use-case, or application can be accelerated by getting access to H-series technology because our quantum computers can do circuits that other technologies cannot. “It actually works!” exclaim excited first-time users.
  3. Quantinuum intends to continue to be the quantum computing company that quietly over-delivers, even on big goals.

1. https://github.com/CQCL/quantinuum-hardware-quantum-volume

2. https://quantum-journal.org/papers/q-2022-05-09-707/

arrow

arrow

arrow
Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.