

By Amy Wolff For Quantinuum

For most high school students, summers are for hanging out, playing video games, and staying up too late. Well, most high-schoolers are not Max Bee-Lindgren, a senior at Decatur High School in Decatur, Georgia. In 2021, Max spent his summer calculating transition matrix elements, the rate at which atoms, molecules, and other quantum-mechanical systems change states when interacting with their environments.
One important calculation is the emission of light from an excited electron in an atom. This state change is difficult to model accurately on current (classical) computers. Quantum computers, like those being developed by Quantinuum, hold great promise for modeling quantum systems but require new algorithms to make efficient use of their capabilities in a way that is robust to noise.
“I’ve always wanted to know how things worked — more specifically — why things happen,” said Max. “When I was a kid, I would endlessly ask my parents ‘why.’ When they answered, it would just trigger more and more questions down an endless chain until eventually the answer would end up being ‘it’s a complicated physics thing we can’t explain.’ So, I figured if I wanted to actually know why things happen, I should probably learn physics.”
For several months last summer, Max had the chance to collaborate online with other physics fanatics, including his mentor, Dr. Dean Lee, a nuclear physics professor at Michigan State University, and Kenneth Choi, a freshman at MIT who created the original rodeo algorithm during his apprenticeship with Dr. Lee in 2020. They were also joined by MSU students Zhengrong Qian, Jacob Watkins, Gabriel Given and Joey Bonitati.
The team met several times a week to discuss new developments in the rodeo algorithm research, collaborate about next steps, and get any big news updates on the project. The time spent paid off when Max was notified that he, along with 39 other high schoolers from across the U.S., was a finalist in the Regeneron Science Talent (STS) Search, the nation’s oldest and most prestigious science and math competition for high school seniors.
Like many people, when a call from an unknown number came in on his phone, Max declined the call. But when the Washington, D.C., number called back a second time, he picked up and was “shocked” to discover he had made the competition’s top 40.
“Being a part of this intensive summer program has driven me to complete the project in the best way possible,” Max said. “Without the support of Dr. Lee and his team, I would still be researching, but not fully applying myself nor putting my experience into practice. It is nice to have a direct and present force driving me to succeed, and thanks to the STS program and my experiences, I’ve met a lot of amazing people who are as focused on physics as I am.”
Quantinuum is an integral partner in the success of this research project.
“The purpose of this collaboration is one of mutual benefits,” said Dr. David Hayes, a principal theorist at Quantinuum. “Professor Lee and his students get to test their theories on real hardware and identify any weaknesses in the proposal. Quantinuum benefits by helping the world get a little closer to identifying quantum algorithms that yield a computational advantage over classical algorithms.”
“Quantinuum is well served by the world-wide effort to advance these algorithms, so we try to identify the most promising ones and provide testbeds for them,” Hayes added. “Professor Lee's proposal caught our eye last year as a new idea for simulating quantum materials, which we believe to be the most promising avenue toward a near-term quantum advantage.”
The 2022 Regeneron Science Talent Search finalists were selected from more than 1,800 highly qualified entrants based on their projects’ scientific rigor and their potential to become world-changing scientists and leaders. Each finalist is awarded at least $25,000, and the top 10 awards range from $40,000 to $250,000.
“Max’s award is for the design of the two-state rodeo algorithm,” said Dr. Lee. “The potential promise of the rodeo algorithm lies in its ability to be robust against noise and exponentially more efficient than other well-known methods for quantum state preparation.”
Max shares his notebook with the Quantinuum theory group regularly and is looking forward to implementing his algorithm soon on the company’s System Model H1 quantum technologies, Powered by Honeywell.
“In the next few months, we’ll get a chance to run the two-state rodeo algorithm on the H1, which is very exciting,” Max stated. “The H1 is a good bit less error prone than other available systems, by an order of magnitude, so the results should be interesting as they unfold.”
“Max was a great person to work with,” noted Professor Lee. “No matter what I gave him, he never got really stuck on anything. Max truly loves his work, and he’s very humble. He has a maturity beyond his years, which will serve him well in future endeavors.”
While Max is unsure about his college choice for next year, he is certain of one thing, “I can’t wait to get to college to just study more physics.”
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.