How do machines “learn”?
While recent years have seen incredible advancements in Artificial Intelligence (AI), no-one really knows how these ‘first-gen’ systems actually work. New work at Quantinuum is helping to develop different frameworks for AI that we can understand - making it interpretable and accountable and therefore far more fit for purpose.
The current fascination with AI systems built around generative Large Language Models (LLMs) is entirely understandable, but lost amid the noise and excitement is the simple fact that AI tech in its current form is basically a “black box” that we can’t look into or examine in any meaningful manner. This is because when computer scientists were starting to figure out how to make machines ‘human like’ and ‘think’, they turned to our best model for a thinking machine, the human brain. The human brain essentially consists of neural networks, and so computer scientists developed artificial neural networks.
However, just as we don’t fully understand how human intelligence works, it’s also true that we don’t really understand how current artificial intelligence works – neural networks are notoriously difficult to interpret and understand. This is broadly described as the “interpretability” issue in AI.
It is self-evident that interpretability is crucial for all kinds of reasons – AI has the power to cause serious harm alongside immense good. It is critical that users understand why a system is making the decisions it does. When we read and hear about ‘safety concerns’ with AI systems, interpretability and accountability are key issues.
At Quantinuum we have been working on this issue for some time – and we began way before AI systems such as generative LLM’s became fashionable. In our AI team based out of Oxford, we have been focused on the development of frameworks for “compositional models” of artificial intelligence. Our intentions and aims are to build artificial intelligence that is interpretable and accountable. We do this in part by using a type of math called “category theory” that has been used in everything from classical computer programming to neuroscience.
Category theory has proven to be a sort of “Rosetta stone”, as John Baez put it, for understanding our universe in an expansive sense – category theory is helpful for things as seemingly disparate as physics and cognition. In a very general sense, categories represent things and ways to go between things, or in other words, a general science of systems and processes. Using this basic framework to understand cognition, we can build new artificial intelligences that are more useful to us – and we can build them on quantum computers, which promise remarkable computing power.
Our AI team, led by Dr. Stephen Clark, Head of AI at Quantinuum, has published a new paper applying these concepts to image recognition. They used their compositional quantum framework for cognition and AI to demonstrate how concepts like shape, color, size, and position can be learned by machines – including quantum computers.
“In the current environment with accountability and transparency being talked about in artificial intelligence, we have a body of research that really matters, and which will fundamentally affect the next generation of AI systems. This will happen sooner than many anticipate” said Ilyas Khan, Quantinuum’s founder.
This paper is part of a larger body of work in quantum computing and artificial intelligence, which holds great promise for our future - as the authors say, “the advantages this may bring, especially with the advent of larger, fault-tolerant quantum computers in the future, is still being worked out by the research community, but the possibilities are intriguing at worst and transformational at best.”
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, according to McKinsey & Company, underscoring how today’s quantum computers are already delivering customer value in their current phase of development.
This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address.
Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction—a capability that, until now, has eluded the industry.
Quantinuum is the first—and only—company to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.
In this regard, Quantinuum is the first company to step from the so-called “NISQ” (noisy intermediate-scale quantum) era towards utility-scale quantum computers.
A quantum computer uses operations called gates to process information in ways that even today’s fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:
A system that can run both gates is classified as universal and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement ‘non-Clifford’ gates is not really a quantum computer.
A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. Quantinuum has the best and brightest scientists dedicated to keeping our systems’ error rates the lowest in the world.
For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing “a full gate set” with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and error rates near 10%—too high for any practical use.
Today, we have published two papers that establishes Quantinuum as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.
The first paper describes how scientists at Quantinuum used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any previously published result.
Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.
Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.
In the second paper, co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called “code switching”.
Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we’ve previously demonstrated full error correction and the other ingredients for universality.
In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than the best previous attempt with error correction. Notably, this process only cost 28 qubits instead of hundreds. This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.
Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.
With all of the required pieces now, finally, in place, we are ‘fully’ equipped to become the first company to perform universal fully fault-tolerant computing—just in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!