


When it comes to completing the statistical tests and other steps necessary for calculating quantum volume, few people have as much as experience as Dr. Charlie Baldwin.
Baldwin, a lead physicist at Quantinuum, and his team have performed the tests numerous times on three different H-Series quantum computers, which have set six industry records for measured quantum volume since 2020.
Quantum volume is a benchmark developed by IBM in 2019 to measure the overall performance of a quantum computer regardless of the hardware technology. (Quantinuum builds trapped ion systems).
Baldwin’s experience with quantum volume prompted him to share what he’s learned and suggest ways to improve the benchmark in a peer-reviewed paper published this week in Quantum.
“We’ve learned a lot by running these tests and believe there are ways to make quantum volume an even stronger benchmark,” Baldwin said.
We sat down with Baldwin to discuss quantum volume, the paper, and the team’s findings.
Quantum volume is measured by running many randomly constructed circuits on a quantum computer and comparing the outputs to a classical simulation. The circuits are chosen to require random gates and random connectivity to not favor any one architecture. We follow the construction proposed by IBM to build the circuits.
In some sense, quantum volume only measures your ability to run the specific set of random quantum volume circuits. That probably doesn’t sound very useful if you have some other application in mind for a quantum computer, but quantum volume is sensitive to many aspects that we believe are key to building more powerful devices.
Quantum computers are often built from the ground up. Different parts—for example, single- and two-qubit gates—have been developed independently over decades of academic research. When these parts are put together in a large quantum circuit, there’re often other errors that creep in and can degrade the overall performance. That’s what makes full-system tests like quantum volume so important; they’re sensitive to these errors.
Increasing quantum volume requires adding more qubits while simultaneously decreasing errors. Our quantum volume results demonstrate all the amazing progress Quantinuum has made at upgrading our trapped-ion systems to include more qubits and identifying and mitigating errors so that users can expect high-fidelity performance on many other algorithms.
I think there’re a couple of things I’ve learned. First, quantum volume isn’t an easy test to run on current machines. While it doesn’t necessarily require a lot of qubits, it does have fairly demanding error requirements. That’s also clear when comparing progress in quantum volume tests across different platforms, which researchers at Los Alamos National Lab did in a recent paper.
Second, I’m always impressed by the continuous and sustained performance progress that our hardware team achieves. And that the progress is actually measurable by using the quantum volume benchmark.
The hardware team has been able to push down many different error sources in the last year while also running customer jobs. This is proven by the quantum volume measurement. For example, H1-2 launched in Fall 2021 with QV=128. But since then, the team has implemented many performance upgrades, recently achieving QV=4096 in about 8 months while also running commercial jobs.
The paper is about four small findings that when put together, we believe, give a clearer view of the quantum volume test.
First, we explored how compiling the quantum volume circuits scales with qubit number and, also proposed using arbitrary angle gates to improve performance—an optimization that many companies are currently exploring.
Second, we studied how quantum volume circuits behave without errors to better relate circuit results to ideal performance.
Third, we ran many numerical simulations to see how the quantum volume test behaved with errors and constructed a method to efficiently estimate performance in larger future systems.
Finally, and I think most importantly, we explored what it takes to meet the quantum volume threshold and what passing it implies about the ability of the quantum computer, especially compared to the requirements for quantum error correction.
Passing the threshold for quantum volume is defined by the results of a statistical test on the output of the circuits called the heavy output test. The result of the heavy output test—called the heavy output probability or HOP—must have an uncertainty bar that clears a threshold (2/3).
Originally, IBM constructed a method to estimate that uncertainty based on some assumptions about the distribution and number of samples. They acknowledged that this construction was likely too conservative, meaning it made much larger uncertainty estimates than necessary.
We were able to verify this with simulations and proposed a different method that constructed much tighter uncertainty estimates. We’ve verified the method with numerical simulations. The method allows us to run the test with many fewer circuits while still having the same confidence in the returned estimate.
Quantum volume has been criticized for a variety of reasons, but I think there’s still a lot to like about the test. Unlike some other full-system tests, quantum volume has a well-defined procedure, requires challenging circuits, and sets reasonable fidelity requirements.
However, it still has some room for improvement. As machines start to scale up, runtime will become an important dimension to probe. IBM has proposed a metric for measuring run time of quantum volume tests (CLOPS). We also agree that the duration of the computation is important but that there should also be tests that balance run time with fidelity, sometimes called ‘time-to-solution.”
Another aspect that could be improved is filling the gap between when quantum volume is no longer feasible to run—at around 30 qubits—and larger machines. There’s recent work in this area that will be interesting to compare to quantum volume tests.
It was great to talk to the experts at IBM. They have so much knowledge and experience on running and testing quantum computers. I’ve learned a lot from their previous work and publications.
The current iteration of quantum volume definitely has an expiration date. It’s limited by our ability to classically simulate the system, so being unable to run quantum volume actually is a goal for quantum computing development. Similarly, quantum volume is a good measuring stick for early development.
Building a large-scale quantum computer is an incredibly challenging task. Like any large project, you break the task up into milestones that you can reach in a reasonable amount of time.
It's like if you want to run a marathon. You wouldn’t start your training by trying to run a marathon on Day 1. You’d build up the distance you run every day at a steady pace. The quantum volume test has been setting our pace of development to steadily reach our goal of building ever higher performing devices.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.