

Cambridge Researchers at Honeywell Quantum Solutions have turned problematic micromotion that jostles trapped ion qubits out of position into a plus.
The team recently demonstrated a technique that uses micromotion to shield nearby ions from stray photons released during mid-circuit measurement, a procedure in which lasers are used to check the quantum state of certain qubits and then reset them.
Mid-circuit measurement is a key capability in today’s early-stage quantum computers. Because the qubit’s state can be checked and then re-used, researchers can run more complex algorithms – such as the holoQUADS algorithm – with fewer qubits.
By “hiding” ions behind micromotion, Honeywell researchers significantly reduced the amount of “crosstalk” – errors caused by photons hitting neighboring qubits – that occurred when measuring qubits during an operation. (Details are available in a pre-print publication available on the arXiv.)
“We were able to reduce crosstalk by an order of magnitude,” said Dr. John Gaebler, Chief Scientist of Commercial Products at Honeywell Quantum Solutions, and lead author of the paper. “It is a significant reduction in crosstalk errors. Much more so than other methods we’ve used.”
The new technique represents another step toward reducing errors that occur in today’s trapped-ion quantum computers, which is necessary if the technology is to solve problems too complex for classical systems.
“For quantum computers to scale, we need to reduce errors throughout the system,” said Tony Uttley, President of Honeywell Quantum Solutions. “The new technique the Honeywell team developed will help us get there.”
Today’s quantum computing technologies are still in the early stage and are prone to “noise” - or interference - caused by qubits interacting with their environment and one another.
This noise causes errors to accumulate, corrupts information stored in and between physical qubits, and disrupts the quantum state in which qubits must exist to run calculations. (Scientists call this decoherence.)
Researchers are trying to eliminate or suppress as many of these errors as possible while also creating logical qubits, a collection of entangled physical qubits on which quantum information is distributed, stored, and protected.
By creating logical qubits, scientists can apply mathematical codes to detect and correct errors and eliminate noise as calculations are running. This multi-step process is known as quantum error correction (QEC). Honeywell researchers recently demonstrated they can detect and correct errors in real-time by applying multiple rounds of full cycles of quantum error correction.
Logical qubits and QEC are important elements to improving the accuracy and precision of quantum computers. But, Gaebler said, those methods are not enough on their own.
“Everything has to be working at a certain level before QEC can take you the rest of the way,” he said. “The more we can suppress or eliminate errors in the overall system, the more effective QEC will be and the fewer qubits we need to run complex calculations.”
In classical computing, bit flip errors occur when a binary digit, or bit, inadvertently switches from a zero to one or vice versa. Quantum computers experience a similar bit flip error as well as phase flip errors. Both errors cause qubits to lose their quantum state – or to decohere. In trapped ion quantum computing, one source of errors comes from the lasers used to implement gate operations and qubit measurements.
Though these lasers are highly controlled, unruly photons (small packets of light) still escape and bounce into neighboring ions causing “crosstalk” and decoherence.
Researchers use a variety of methods to protect these ions from crosstalk, especially during mid-circuit measurement where only a single qubit or a small subset of qubits is meant to be measured. With its quantum charged-coupled device (QCCD) architecture, the Honeywell team takes the approach of moving neighboring ions away from the qubit being fluoresced by a laser. But there is limited space along the device, which becomes even more compact as more qubits are added.
“Even when we move them more than 100 microns away, we still get more crosstalk than we prefer,” said Dr. Charlie Baldwin, a senior advanced physicist and co-author of the paper. “There is still some scattered light from the detection laser.”
The team hit on hiding neighboring ions from stray photons using micromotion potentials, which are caused by the oscillating electric fields used to “trap” these charged atoms. Micromotion is typically thought of as a nuisance with ion trapping, causing the ions to rapidly oscillate back and forth, and occurs when the ions are pushed out of the center of the trap by additional electric fields.
“Usually, we are trying to eliminate micromotion but in this case, we were able to use it to our benefit,” said Dr. Patty Lee, chief scientist at Honeywell Quantum Solutions.
The team’s goal is to reduce by 10 million the probability of a neighboring ion absorbing photons at 110 microns away. By moving neighboring ions and hiding them behind micromotion the Honeywell team is approaching that mark.
In their paper, Honeywell researchers delved into how and why hiding ions with micromotion works, including the ideal frequency of the oscillations. They also identified and characterized errors. (The basic physics behind the concept of hiding ions was first explored by the ion storage group at the National Institute of Standards and Technology.)
“Mid-circuit operations are a new feature in commercial quantum computing hardware, so we had to invent a new way to validate that the micromotion hiding technique was achieving the low level of crosstalk errors that we predicted,” said Dr. Charlie Baldwin.
Though the new method resulted in a significant reduction of crosstalk errors, the Honeywell team acknowledged there is further to go.
“Crosstalk is one of those scary errors for scaling,” Gaebler said. “It has to be controlled because it becomes more of a problem as you scale and add qubits. This is another tool that will help us scale and help us compact our systems and pack in as many qubits as we can.”
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
At this year’s conference, from November 16th – 21st in St. Louis, Missouri, Quantinuum showcased how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team was on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum. Folks stopped by our booth to see:
Our quantum computing experts hosted daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.