Trust and verify: Quantinuum hardware team posts performance data on GitHub

February 21, 2023

If you’re a software developer, the best way to show your work is to post your code on GitHub. The site serves as a host for code repositories and a tool for software version control. It’s a straightforward and popular way for developers to share code, collaborate and spread the word about new languages and technical projects. Community members can download code, contribute to open source software projects, or develop their own projects. 

Quantinuum has used this open platform to make it easier for developers and everyone in the quantum ecosystem to understand the performance of the company’s H-Series quantum computers. The team posts to GitHub characterization data of System Model H1 quantum computer performance and also benchmarking data on Quantum Volume.

The Quantinuum team prioritizes transparency and published the data behind the System Model H1 data sheets in a publicly available place to back up performance claims with data. Anyone who is curious about how the hardware team achieved 32,768 quantum volume in February can review the quantum volume data on GitHub. This repository contains the raw data along with the analysis code.

Charlie Baldwin, a lead physicist at Quantinuum, said the GitHub postings make it easy to understand how the hardware team measures errors.

“Algorithm developers and anyone interested in quantum computing also can use the data to verify our stated error rates,” he said. “Both the single- and two-qubit error rates are among the lowest--if not the lowest--available on a commercial system.”

The publicly available data from Quantinuum’s H-Series, Powered by Honeywell, is the most comprehensive set shared by a quantum computing company, as it includes circuits, raw data, gate counts and error rates. Quantinuum shares this data for users who need to understand exactly what a quantum computer’s performance metrics represent when they are analyzing or publishing their results. Posting the verification data for any performance metric is a best practice of how quantum hardware providers can promote more transparency in the performance of their hardware.

The team also has posted data sheets for the System Model H1 and for the System Model H1 Emulator on the company website. The System Model H1 is a generation of quantum computers based on ions trapped in a single linear geometry. Currently the Quantinuum H1-1 and H1-2 are available to customers. Many Fortune 500 companies use the System Model H1 for quantum research and development.

Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.