Quantinuum’s recent announcement about its breakthrough on topological qubits garnered headlines across both the specialist scientific media as well as those more broadly interested in the advances that will make quantum computing useful more quickly than anticipated. However, hidden in the details was a reference to a technology that is as rare as it is valuable. The fact is that the topological qubit that was generated could only have been done via Quantinuum’s H-Series quantum processors due to their various qualities and functions of which measurement and ‘feed-forward’ is critical.
As we know, great advances are often built on the back of little-known utilities - functions and tools that rarely get mentioned. These are sometimes technological constructs that might seem simple on the surface, but which are difficult (in the case of feed-forward make that “very difficult” to create), and without which critical advances would remain merely theoretical.
As detailed in two manuscripts that have been uploaded onto the pre-print repository, arXiv, Quantinuum researchers and their collaborators successfully demonstrated, for the first time, a large-scale implementation of a long-standing theory in quantum information science; namely the use of measurement and feed-forward (see below for a detailed explanation of what this means) to efficiently generate long-range entangled states.
The two experiments, conducted with research partners at the California Institute of Technology, Harvard University, the University of Sydney, the Perimeter Institute for Theoretical Physics and the University of California, Davis, used Quantinuum’s trapped ion quantum computers, Powered by Honeywell, to show how feed-forward enables success by dramatically reducing the resources required to produce highly-entangled quantum states and topologically ordered phases, one of the most exciting areas of research in modern physics.
Feed-forward uses selective measurements during the execution of a quantum circuit and adapts future operations depending on those measurement results. To be successful in running an adaptive quantum circuit, several challenging requirements must be met: (1) a select group of qubits must be measured in the middle of a circuit with high fidelity, and without accidentally measuring other qubits, and (2) the measurement results must be sent to a classical computer and quickly processed to create instructions to be fed-forward to the quantum computer on the fly - all of which must be done fast enough to prevent the active qubits from decohering.
Once these requirements are met, the feed-forward capabilities let quantum computers create long-range entangled states which are emerging as central to various branches of modern physics such as quantum error correction codes and the study of spin liquids in condensed matter. It is also the essential component of topological order and could enable the simulation of quantum systems beyond the reach of classical computation.
In the paper “Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer”, Quantinuum, working with colleagues from the California Institute of Technology and Harvard University use feed-forward to explore topologically ordered phases of matter.
Separately, a different team of scientists from Quantinuum, the University of Sydney, the Perimeter Institute for Theoretical Physics and the University of California, Davis, used feed-forward to explore adaptive quantum circuits in “Experimental Demonstration of the Advantage of Adaptive Quantum Circuits”.
Two of Quantinuum’s physicists who worked on both experiments, Henrik Dreyer and Michael Foss-Feig, offered some observations on the work.
“While it has been clear to theorists that feed-forward would be a useful primitive, doing it with low errors has turned out to be very challenging. The H-Series systems have made it possible to use this primitive efficiently,” said Henrik, managing director and scientific lead at Quantinuum’s office in Munich, Germany.
Michael, who is based at Quantinuum’s world-leading quantum computing laboratory outside of Denver, Colorado, also described feed-forward and adaptive quantum circuits as a jump toward meaningful simulations.
“This capability speeds up the timeline for new scientific discoveries,” he said.
These successful experiments proved that feed-forward operations reduce the quantum resources required for certain algorithms and are a valuable building block for more advanced research.
"I am really excited by the opportunities opened up by this demonstration: using wave-function collapse is a very powerful tool for preparing very exotic entangled states further down the road, where there are no good scalable alternatives," said Dr. Ruben Verresen, a physicist at Harvard University and a co-author of the topological order paper.
The authors note that “the primary technical challenge in implementing adaptive circuits is the requirement to perform partial measurements of a subset of qubits in the middle of a quantum circuit with minimal cross-talk on unmeasured qubits, return those results to a classical computer for processing, and then condition future operations on the results of that processing in real time.”
The paper describes how quantum hardware has now reached a state where adaptive quantum circuits are possible and can outperform unitary circuits. The experiment detailed in the paper “firmly establishes that given access to the same amount of quantum computational resources with respect to available gates and circuit depth, adaptive quantum circuits can perform tasks that are impossible for quantum circuits without feedback.”
Henrik and Michael noted that the adaptive circuit research provides concrete evidence not only that feed-forward works, but that it now works well enough to achieve tasks that would not be possible without it.
“We were trying to find a metric by which somebody can look at our data produced by a shallow adaptive circuit, and convince themselves it could not have been produced with a unitary circuit of the same depth,” Michael said. The metric proposed in the adaptive circuits paper achieved exactly that.
Demonstrating this technique required significant performance from the H1-1.
“It's a huge challenge to implement this in a way that works well,” Michael said.
Quantinuum’s H-Series has the capabilities that are crucial to this work: high fidelity gates, low state preparation and measurement (SPAM) error, low memory error, the ability to perform mid-circuit measurement, and all-to-all connectivity.
The feed-forward theory has been well-known for years but challenging to execute in practice, and as the paper states:
“While individual elements of this triad have been demonstrated in the context of error correction and topological order, combining all of these ingredients into one experimental platform has proven elusive since the inception of this idea more than a decade ago. Here, we demonstrate for the first time the deterministic, high-fidelity preparation of long-range entangled quantum states using a protocol with constant depth, using Quantinuum’s H-Series programmable Ytterbium ion trap quantum computer.”
The authors also note that “the all-to-all connectivity of the device was vital for the implementation of the periodic two-dimensional geometry and the conditional dynamics.”
In summary – these papers showcase state-of-the-art demonstrations of what can be done with quantum computers today but are only a preview of what will be done tomorrow.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.