Quantinuum and NVIDIA, world leaders in their respective sectors, are combining forces to fast-track commercially scalable quantum supercomputers, further bolstering the announcement Quantinuum made earlier this year about the exciting new potential in Generative Quantum AI.
Make no mistake about it, the global quantum race is on. With over $2 billion raised by companies in 2024 alone, and over 150 new startups in the past five years, quantum computing is no longer restricted to ‘the lab’.
The United Nations proclaimed 2025 as the International Year of Quantum Science and Technology (IYQ), and as we march toward the end of the first quarter, the old maxim that quantum computing is still a decade (or two, or three) away is no longer relevant in today’s world. Governments, commercial enterprises and scientific organizations all stand to benefit from quantum computers, led by those built by Quantinuum.
That is because, amid the flurry of headlines and social media chatter filled with aspirational statements of future ambitions shared by those in the heat of this race, we at Quantinuum continue to lead by example. We demonstrate what that future looks like today, rather than relying solely on slide deck presentations.
Our quantum computers are the most powerful systems in the world. Our H2 system, the only quantum computer that cannot be classically simulated, is years ahead of any other system being developed today. In the coming months, we’ll introduce our customers to Helios, a trillion times more powerful than H2, further extending our lead beyond where the competition is still only planning to be.
At Quantinuum, we have been convinced for years that the impact of quantum computers on the real world will happen earlier than anticipated. However, we have known that impact will be when powerful quantum computers and powerful classical systems work together.
This sort of hybrid ‘supercomputer’ has been referenced a few times in the past few months, and there is, rightly, a sense of excitement about what such an accelerated quantum supercomputer could achieve.
In a revolutionary move on March 18th, 2025, at the GTC AI conference, NVIDIA announced the opening of a world-class accelerated quantum research center with Quantinuum selected as a key founding collaborator to work on projects with NVIDIA at the center.
With details shared in an accompanying press statement and blog post, the NVIDIA Accelerated Quantum Research Center (NVAQC) being built in Boston, Massachusetts, will integrate quantum computers with AI supercomputers to ultimately explore how to build accelerated quantum supercomputers capable of solving some of the world’s most challenging problems. The center will begin operations later this year.
As shared in Quantinuum’s accompanying statement, the center will draw on the NVIDIA CUDA-Q platform, alongside a NVIDIA GB200 NVL72 system containing 576 NVIDIA Blackwell GPUs dedicated to quantum research.
Integrating quantum and classical hardware relies on a platform that can allow researchers and developers to quickly shift context between these two disparate computing paradigms within a single application. NVIDIA CUDA-Q platform will be the entry-point for researchers to exploit the NVAQC quantum-classical integration.
In 2022, Quantinuum became the first company to bring CUDA-Q to its quantum systems, establishing a pioneering collaboration that continues to today. Users of CUDA-Q are currently offered access to Quantinuum’s System H1 QPU and emulator for 90 days.
Quantinuum’s future systems will continue to support the CUDA-Q platform. Furthermore, Quantinuum and NVIDIA are committed to evolving and improving tools for quantum classical integration to take advantage of the latest hardware features, for example, on our upcoming Helios generation.
A few weeks ago, we disclosed high level details about an AI system that we refer to as Generative Quantum AI, or GenQAI. We highlighted a timeline between now and the end of this year when the first commercial systems that can accelerate both existing AI and quantum computers.
At a high level, an AI system such as GenQAI will be enhanced by access to information that has not previously been accessible. Information that is generated from a quantum computer that cannot be simulated. This information and its effect can be likened to a powerful microscope that brings accuracy and detail to already powerful LLM’s, bridging the gap from today’s impressive accomplishments towards truly impactful outcomes in areas such as biology and healthcare, material discovery and optimization.
Through the integration of the most powerful in quantum and classical systems, and by enabling tighter integration of AI with quantum computing, the NVAQC will be an enabler for the realization of the accelerated quantum supercomputer needed for GenQAI products and their rapid deployment and exploitation.
The NVAQC will foster the tools and innovations needed for fully fault-tolerant quantum computing and will be enabler to the roadmap Quantinuum released last year.
With each new generation of our quantum computing hardware and accompanying stack, we continue to scale compute capabilities through more powerful hardware and advanced features, accelerating the timeline for practical applications. To achieve these advances, we integrate the best CPU and GPU technologies alongside our quantum innovations. Our long-standing collaboration with NVIDIA drives these advancements forward and will be further enriched by the NVAQC.
Here are a couple of examples:
In quantum error correction, error syndromes detected by measuring "ancilla" qubits are sent to a "decoder." The decoder analyzes this information to determine if any corrections are needed. These complex algorithms must be processed quickly and with low latency, requiring advanced CPU and GPU power to calculate and apply corrections keeping logical qubits error-free. Quantinuum has been collaborating with NVIDIA on the development of customized GPU-based decoders which can be coupled with our upcoming Helios system.
In our application space, we recently announced the integration of InQuanto v4.0, the latest version of Quantinuum’s cutting edge computational chemistry platform, with NVIDIA cuQuantum SDK to enable previously inaccessible tensor-network-based methods for large-scale and high-precision quantum chemistry simulations.
Our work with NVIDIA underscores the partnership between quantum computers and classical processors to maximize the speed toward scaled quantum computers. These systems offer error-corrected qubits for operations that accelerate scientific discovery across a wide range of fields, including drug discovery and delivery, financial market applications, and essential condensed matter physics, such as high-temperature superconductivity.
We look forward to sharing details with our partners and bringing meaningful scientific discovery to generate economic growth and sustainable development for all of humankind.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Our quantum algorithms team has been hard at work exploring solutions to continually optimize our system’s performance. Recently, they’ve invented a novel technique, called the Quantum Paldus Transform (QPT), that can offer significant resource savings in future applications.
The transform takes complex representations and makes them simple, by transforming into a different “basis”. This is like looking at a cube from one angle, then rotating it and seeing just a square, instead. Transformations like this save resources because the more complex your problem looks, the more expensive it is to represent and manipulate on qubits.
While it might sound like magic, transforms are a commonly used tool in science and engineering. Transforms simplify problems by reshaping them into something that is easier to deal with, or that provides a new perspective on the situation. For example, sound engineers use Fourier transforms every day to look at complex musical pieces in terms of their frequency components. Electrical engineers use Laplace transforms; people who work in image processing use the Abel transform; physicists use the Legendre transform, and so on.
In a new paper outlining the necessary tools to implement the QPT, Dr. Nathan Fitzpatrick and Mr. Jędrzej Burkat explain how the QPT will be widely applicable in quantum computing simulations, spanning areas like molecular chemistry, materials science, and semiconductor physics. The paper also describes how the algorithm can lead to significant resource savings by offering quantum programmers a more efficient way of representing problems on qubits.
The efficiency of the QPT stems from its use of one of the most profound findings in the field of physics: that symmetries drive the properties of a system.
While the average person can “appreciate” symmetry, for example in design or aesthetics, physicists understand symmetry as a much more profound element present in the fabric of reality. Symmetries are like the universe’s DNA; they lead to conservation laws, which are the most immutable truths we know.
Back in the 1920’s, when women were largely prohibited from practicing physics, one of the great mathematicians of the century, Emmy Noether, turned her attention to the field when she was tasked with helping Einstein with his work. In her attempt to solve a problem Einstein had encountered, Dr. Noether realized that all the most powerful and fundamental laws of physics, such as “energy can neither be created nor destroyed” are in fact the consequence of a deep simplicity – symmetry – hiding behind the curtains of reality. Dr. Noether’s theorem would have a profound effect on the trajectory of physics.
In addition to the many direct consequences of Noether’s theorem is a longstanding tradition amongst physicists to treat symmetry thoughtfully. Because of its role in the fabric of our universe, carefully considering the symmetries of a system often leads to invaluable insights.
Many of the systems we are interested in simulating with quantum computers are, at their heart, systems of electrons. Whether we are looking at how electrons move in a paired dance inside superconductors, or how they form orbitals and bonds in a chemical system, the motion of electrons are at the core.
Seven years after Noether published her blockbuster results, Wolfgang Pauli made waves when he published the work describing his Pauli exclusion principle, which relies heavily on symmetry to explain basic tenets of quantum theory. Pauli’s principle has enormous consequences; for starters, describing how the objects we interact with every day are solid even though atoms are mostly empty space, and outlining the rules of bonds, orbitals, and all of chemistry, among other things.
It is Pauli's symmetry, coupled with a deep respect for the impact of symmetry, that led our team at Quantinuum to the discovery published today.
In their work, they considered the act of designing quantum algorithms, and how one’s design choices may lead to efficiency or inefficiency.
When you design quantum algorithms, there are many choices you can make that affect the final result. Extensive work goes into optimizing each individual step in an algorithm, requiring a cyclical process of determining subroutine improvements, and finally, bringing it all together. The significant cost and time required is a limiting factor in optimizing many algorithms of interest.
This is again where symmetry comes into play. The authors realized that by better exploiting the deepest symmetries of the problem, they could make the entire edifice more efficient, from state preparation to readout. Over the course of a few years, a team lead Dr. Fitzpatrick and his colleague Jędrzej Burkat slowly polished their approach into a full algorithm for performing the QPT.
The QPT functions by using Pauli’s symmetry to discard unimportant details and strip the problem down to its bare essentials. Starting with a Paldus transform allows the algorithm designer to enjoy knock-on effects throughout the entire structure, making it overall more efficient to run.
“It’s amazing to think how something we discovered one hundred years ago is making quantum computing easier and more efficient,” said Dr. Nathan Fitzpatrick.
Ultimately, this innovation will lead to more efficient quantum simulation. Projects we believed to still be many years out can now be realized in the near term.
The discovery of the Quantum Paldus Transform is a powerful reminder that enduring ideas—like symmetry—continue to shape the frontiers of science. By reaching back into the fundamental principles laid down by pioneers like Noether and Pauli, and combining them with modern quantum algorithm design, Dr. Fitzpatrick and Mr. Burkat have uncovered a tool with the potential to reshape how we approach quantum computation.
As quantum technologies continue their crossover from theoretical promise to practical implementation, innovations like this will be key in unlocking their full potential.
In a new paper in Nature Physics, we've made a major breakthrough in one of quantum computing’s most elusive promises: simulating the physics of superconductors. A deeper understanding of superconductivity would have an enormous impact: greater insight could pave the way to real-world advances, like phone batteries that last for months, “lossless” power grids that drastically reduce your bills, or MRI machines that are widely available and cheap to use. The development of room-temperature superconductors would transform the global economy.
A key promise of quantum computing is that it has a natural advantage when studying inherently quantum systems, like superconductors. In many ways, it is precisely the deeply ‘quantum’ nature of superconductivity that makes it both so transformative and so notoriously difficult to study.
Now, we are pleased to report that we just got a lot closer to that ultimate dream.
To study something like a superconductor with a quantum computer, you need to first “encode” the elements of the system you want to study onto the qubits – in other words, you want to translate the essential features of your material onto the states and gates you will run on the computer.
For superconductors in particular, you want to encode the behavior of particles known as “fermions” (like the familiar electron). Naively simulating fermions using qubits will result in garbage data, because qubits alone lack the key properties that make a fermion so unique.
Until recently, scientists used something called the “Jordan-Wigner” encoding to properly map fermions onto qubits. People have argued that the Jordan-Wigner encoding is one of the main reasons fermionic simulations have not progressed beyond simple one-dimensional chain geometries: it requires too many gates as the system size grows.
Even worse, the Jordan-Wigner encoding has the nasty property that it is, in a sense, maximally non-fault-tolerant: one error occurring anywhere in the system affects the whole state, which generally leads to an exponential overhead in the number of shots required. Due to this, until now, simulating relevant systems at scale – one of the big promises of quantum computing – has remained a daunting challenge.
Theorists have addressed the issues of the Jordan-Wigner encoding and have suggested alternative fermionic encodings. In practice, however, the circuits created from these alternative encodings come with large overheads and have so far not been practically useful.
We are happy to report that our team developed a new way to compile one of the new, alternative, encodings that dramatically improves both efficiency and accuracy, overcoming the limitations of older approaches. Their new compilation scheme is the most efficient yet, slashing the cost of simulating fermionic hopping by an impressive 42%. On top of that, the team also introduced new, targeted error mitigation techniques that ensure even larger systems can be simulated with far fewer computational "shots"—a critical advantage in quantum computing.
Using their innovative methods, the team was able to simulate the Fermi-Hubbard model—a cornerstone of condensed matter physics— at a previously unattainable scale. By encoding 36 fermionic modes into 48 physical qubits on System Model H2, they achieved the largest quantum simulation of this model to date.
This marks an important milestone in quantum computing: it demonstrates that large-scale simulations of complex quantum systems, like superconductors, are now within reach.
This breakthrough doesn’t just show how we can push the boundaries of what quantum computers can do; it brings one of the most exciting use cases of quantum computing much closer to reality. With this new approach, scientists can soon begin to simulate materials and systems that were once thought too complex for the most powerful classical computers alone. And in doing so, they’ve unlocked a path to potentially solving one of the most exciting and valuable problems in science and technology: understanding and harnessing the power of superconductivity.
The future of quantum computing—and with it, the future of energy, electronics, and beyond—just got a lot more exciting.
In an experiment led by Princeton and NIST, we’ve just delivered a crucial result in Quantum Error Correction (QEC), demonstrating key principles of scalable quantum computing developed by Drs Peter Shor, Dorit Aharonov, and Michael Ben-Or. In this latest paper, we showed that by using “concatenated codes” noise can be exponentially suppressed — proving that quantum computing will scale.
Quantum computing is already producing results, but high-profile applications like Shor’s algorithm—which can break RSA encryption—require error rates about a billion times lower than what today’s machines can achieve.
Achieving such low error rates is a holy grail of quantum computing. Peter Shor was the first to hypothesize a way forward, in the form of quantum error correction. Building on his results, Dorit Aharanov and Michael Ben-Or proved that by concatenating quantum error correcting codes, a sufficiently high-quality quantum computer can suppress error rates arbitrarily at the cost of a very modest increase in the required number of qubits. Without that insight, building a truly fault-tolerant quantum computer would be impossible.
Their results, now widely referred to as the “threshold theorem”, laid the foundation for realizing fault-tolerant quantum computing. At the time, many doubted that the error rates required for large-scale quantum algorithms could ever be achieved in practice. The threshold theorem made clear that large scale quantum computing is a realistic possibility, giving birth to the robust quantum industry that exists today.
Until now, nobody has realized the original vision for the threshold theorem. Last year, Google performed a beautiful demonstration of the threshold theorem in a different context (without concatenated codes). This year, we are proud to report the first experimental realization of that seminal work—demonstrating fault-tolerant quantum computing using concatenated codes, just as they envisioned.
The team demonstrated that their family of protocols achieves high error thresholds—making them easier to implement—while requiring minimal ancilla qubits, meaning lower overall qubit overhead. Remarkably, their protocols are so efficient that fault-tolerant preparation of basis states requires zero ancilla overhead, making the process maximally efficient.
This approach to error correction has the potential to significantly reduce qubit requirements across multiple areas, from state preparation to the broader QEC infrastructure. Additionally, concatenated codes offer greater design flexibility, which makes them especially attractive. Taken together, these advantages suggest that concatenation could provide a faster and more practical path to fault-tolerant quantum computing than popular approaches like the surface code.
From a broader perspective, this achievement highlights the power of collaboration between industry, academia, and national laboratories. Quantinuum’s commercial quantum systems are so stable and reliable that our partners were able to carry out this groundbreaking research remotely—over the cloud—without needing detailed knowledge of the hardware. While we very much look forward to welcoming them to our labs before long, its notable that they never need to step inside to harness the full capabilities of our machines.
As we make quantum computing more accessible, the rate of innovation will only increase. The era of plug-and-play quantum computing has arrived. Are you ready?