Initiating Impact Today: Combining the World’s Most Powerful in Quantum and Classical Compute

March 20, 2025
A diagram of a diagram of a diagramDescription automatically generated with medium confidence

Quantinuum and NVIDIA, world leaders in their respective sectors, are combining forces to fast-track commercially scalable quantum supercomputers, further bolstering the announcement Quantinuum made earlier this year about the exciting new potential in Generative Quantum AI. 

Make no mistake about it, the global quantum race is on. With over $2 billion raised by companies in 2024 alone, and over 150 new startups in the past five years, quantum computing is no longer restricted to ‘the lab’.  

The United Nations proclaimed 2025 as the International Year of Quantum Science and Technology (IYQ), and as we march toward the end of the first quarter, the old maxim that quantum computing is still a decade (or two, or three) away is no longer relevant in today’s world. Governments, commercial enterprises and scientific organizations all stand to benefit from quantum computers, led by those built by Quantinuum.

That is because, amid the flurry of headlines and social media chatter filled with aspirational statements of future ambitions shared by those in the heat of this race, we at Quantinuum continue to lead by example. We demonstrate what that future looks like today, rather than relying solely on slide deck presentations.

Our quantum computers are the most powerful systems in the world. Our H2 system, the only quantum computer that cannot be classically simulated, is years ahead of any other system being developed today. In the coming months, we’ll introduce our customers to Helios, a trillion times more powerful than H2, further extending our lead beyond where the competition is still only planning to be. 

At Quantinuum, we have been convinced for years that the impact of quantum computers on the real world will happen earlier than anticipated. However, we have known that impact will be when powerful quantum computers and powerful classical systems work together. 

This sort of hybrid ‘supercomputer’ has been referenced a few times in the past few months, and there is, rightly, a sense of excitement about what such an accelerated quantum supercomputer could achieve.

The Power of Hybrid Quantum and Classical Compute

In a revolutionary move on March 18th, 2025, at the GTC AI conference, NVIDIA announced the opening of a world-class accelerated quantum research center with Quantinuum selected as a key founding collaborator to work on projects with NVIDIA at the center. 

With details shared in an accompanying press statement and blog post, the NVIDIA Accelerated Quantum Research Center (NVAQC) being built in Boston, Massachusetts, will integrate quantum computers with AI supercomputers to ultimately explore how to build accelerated quantum supercomputers capable of solving some of the world’s most challenging problems. The center will begin operations later this year.

As shared in Quantinuum’s accompanying statement, the center will draw on the NVIDIA CUDA-Q platform, alongside a NVIDIA GB200 NVL72 system containing 576 NVIDIA Blackwell GPUs dedicated to quantum research. 

The Role of CUDA-Q in Quantum-Classical Integration  

Integrating quantum and classical hardware relies on a platform that can allow researchers and developers to quickly shift context between these two disparate computing paradigms within a single application. NVIDIA CUDA-Q platform will be the entry-point for researchers to exploit the NVAQC quantum-classical integration. 

In 2022, Quantinuum became the first company to bring CUDA-Q to its quantum systems, establishing a pioneering collaboration that continues to today. Users of CUDA-Q are currently offered access to Quantinuum’s System H1 QPU and emulator for 90 days.

Quantinuum’s future systems will continue to support the CUDA-Q platform. Furthermore, Quantinuum and NVIDIA are committed to evolving and improving tools for quantum classical integration to take advantage of the latest hardware features, for example, on our upcoming Helios generation. 

The Gen-Q-AI Moment

A few weeks ago, we disclosed high level details about an AI system that we refer to as Generative Quantum AI, or GenQAI. We highlighted a timeline between now and the end of this year when the first commercial systems that can accelerate both existing AI and quantum computers.

At a high level, an AI system such as GenQAI will be enhanced by access to information that has not previously been accessible. Information that is generated from a quantum computer that cannot be simulated. This information and its effect can be likened to a powerful microscope that brings accuracy and detail to already powerful LLM’s, bridging the gap from today’s impressive accomplishments towards truly impactful outcomes in areas such as biology and healthcare, material discovery and optimization.

Through the integration of the most powerful in quantum and classical systems, and by enabling tighter integration of AI with quantum computing, the NVAQC will be an enabler for the realization of the accelerated quantum supercomputer needed for GenQAI products and their rapid deployment and exploitation.

Innovating our Roadmap

The NVAQC will foster the tools and innovations needed for fully fault-tolerant quantum computing and will be enabler to the roadmap Quantinuum released last year.

With each new generation of our quantum computing hardware and accompanying stack, we continue to scale compute capabilities through more powerful hardware and advanced features, accelerating the timeline for practical applications. To achieve these advances, we integrate the best CPU and GPU technologies alongside our quantum innovations. Our long-standing collaboration with NVIDIA drives these advancements forward and will be further enriched by the NVAQC. 

Here are a couple of examples: 

In quantum error correction, error syndromes detected by measuring "ancilla" qubits are sent to a "decoder." The decoder analyzes this information to determine if any corrections are needed. These complex algorithms must be processed quickly and with low latency, requiring advanced CPU and GPU power to calculate and apply corrections keeping logical qubits error-free. Quantinuum has been collaborating with NVIDIA on the development of customized GPU-based decoders which can be coupled with our upcoming Helios system. 

In our application space, we recently announced the integration of InQuanto v4.0, the latest version of Quantinuum’s cutting edge computational chemistry platform, with NVIDIA cuQuantum SDK to enable previously inaccessible tensor-network-based methods for large-scale and high-precision quantum chemistry simulations.

Our work with NVIDIA underscores the partnership between quantum computers and classical processors to maximize the speed toward scaled quantum computers. These systems offer error-corrected qubits for operations that accelerate scientific discovery across a wide range of fields, including drug discovery and delivery, financial market applications, and essential condensed matter physics, such as high-temperature superconductivity.

We look forward to sharing details with our partners and bringing meaningful scientific discovery to generate economic growth and sustainable development for all of humankind.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
September 15, 2025
Quantum World Congress 2025

From September 16th – 18th, Quantum World Congress (QWC) brought together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

Quantinuum is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. With our quantum experts were on site, we showcased the latest on Quantinuum Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Highlights from QWC

Dr. Patty Lee Named the Industry Pioneer in Quantum

The Quantum Leadership Awards celebrate visionaries transforming quantum science into global impact. This year at QWC, Dr. Patty Lee, our Chief Scientist for Hardware Technology Development, was named the Industry Pioneer in Quantum! This honor celebrates her more than two decades of leadership in quantum computing and her pivotal role advancing the world’s leading trapped-ion systems. Watch the Award Ceremony here.

Keynote with Quantinuum's CEO, Dr. Rajeeb Hazra

At QWC 2024, Quantinuum’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, Raj shared the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and exciting insights on what’s to come from Quantinuum. Access the full session here.

Panel Session: Policy Priorities for Responsible Quantum and AI

As part of the Track Sessions on Government & Security, Quantinuum’s Director of Government Relations, Ryan McKenney, discussed “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat: Establishing a Pro-Innovation Regulatory Framework

During the Track Session on Industry Advancement, Quantinuum’s Chief Legal Officer, Kaniah Konkoly-Thege, and Director of Government Relations, Ryan McKenney, discussed the importance of “Establishing a Pro-Innovation Regulatory Framework”.

events
All
Blog
September 15, 2025
Quantum gravity in the lab

In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.

In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of “spin fluids”, would go on to ignite one of the most surprising and profound connections in modern physics—a bridge between the strange behavior of quantum materials and the warped spacetime of black holes.

Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holography—the idea that the universe we live in might be a projection, from a lower-dimensional reality.

Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface."  

The “SYK” model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metals—and even in black holes. In fact, The SYK model has also been used to study one of physics’ true final frontiers, quantum gravity, with the authors of the paper calling it “a paradigmatic model for quantum gravity in the lab.”  

The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.

Now, 10 years after Kitaev’s watershed lectures, we’ve made new progress in studying the SYK model. In a new paper, we’ve completed the largest ever SYK study on a quantum computer. By exploiting our system’s native high fidelity and all-to-all connectivity, as well as our scientific team’s deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.

While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).

However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computer—quantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.

Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.

First, the team adopted a randomized quantum algorithm called TETRIS to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.

In addition, the team “sparsified” the SYK model, which means “pruning” the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.

They didn’t stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.

As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of science’s biggest questions.

technical
All
Blog
September 9, 2025
Preparation is everything

At Quantinuum, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.

A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or “state prep,” is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.

Recently, our algorithm teams have been tackling this challenge from all angles. We’ve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.

In the first paper, our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.

To do this, our team investigated two different state prep methods. The first method uses Givens rotations, implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.

Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the “sparse state preparation” scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.

In the second paper, our team focused on state prep for materials simulation. Generally, it’s much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.

In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.

Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature – and approaches like this are what will allow us to perform the necessary studies to one day get us there.

Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the third paper, our team made fault-tolerant state preparation—the critical first step in any fault-tolerant algorithm—roughly twice as efficient. With our new “flag at origin” technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.

The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we’ve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.

On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team’s work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem—and is quite timely given our recent advances into true fault-tolerance.

This generality isn’t just applicable to different codes, it’s also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This “state diversity” is especially valuable when working with the best codes – codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.

From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.

technical
All