InQuanto Integrates NVIDIA cuQuantum for Native GPU Support and Prepares for the Era of Quantum Supercomputing

With quantum progress accelerating, we introduce InQuanto v4.0 and explain how it supports customers and researchers exploring the application of AI, HPC and quantum computing – A.K.A. Quantum Supercomputing – to problems in chemistry and related fields

November 21, 2024

Chemistry plays a central role in the modern global economy, as it has for centuries. From Antoine Lavoisier to Alessandro Volta, Marie Curie to Venkatraman Ramakrishnan, pioneering chemists drove progress in fields such as combustion, electrochemistry, and biochemistry. They contributed to our mastery of critical 21st century materials such as biodegradable plastics, semiconductors, and life-saving pharmaceuticals. 

Advances in high-performance computing (HPC) and AI have brought fundamental and industrial science ever more within the scope of methods like data science and predictive analysis. In modern chemistry, it has become routine for research to be aided by computational models run in silico. Yet, due to their intrinsically quantum mechanical nature, “strongly correlated” chemical systems – those involving strongly interacting electrons or highly interdependent molecular behaviors – prove extremely hard to accurately simulate using classical computers alone. Quantum computers running quantum algorithms are designed to meet this need. Strongly correlated systems turn up in potential applications such as smart materials, high-temperature superconductors, next-generation electronic devices, batteries and fuel cells, revealing the economic potential of extending our understanding of these systems, and the motivation to apply quantum computing to computational chemistry. 

For senior business and research leaders driving value creation and scientific discovery, a critical question is how will the introduction of quantum computers affect the trajectory of computational approaches to fundamental and industrial science?

Introducing InQuanto v4.0

This is the exciting context for our announcement of InQuanto v4.0, the latest iteration of our computational chemistry platform for quantum computers. Developed over many years in close partnership with computational chemists and materials scientists, InQuanto has become an essential tool for teams using the most advanced methods for simulating molecular and material systems. InQuanto v4.0 is packed with powerful updates, including the capability to incorporate NVIDIA’s tensor network methods for large-scale classical simulations supported by graphical processing units (GPUs). 

When researching chemistry on quantum computers, we use classical HPC to perform tasks such as benchmarking, and for classical pre- and post-processing with computational chemistry methods such as density functional theory. This powerful hybrid quantum-classical combination with InQuanto accelerated our work with partners such as BMW Group, Airbus, and Honeywell. Global businesses and national governments alike are gearing up for the use of such hybrid “quantum supercomputers” to become standard practice. 

In a recent technical blog post, we explored the rapid development and deployment of InQuanto for research and enterprise users, offering insights for combining quantum and high-performance classical methods with only a few lines of code. Here, we provide a higher-level overview of the value InQuanto brings to fundamental and industrial research teams. 

InQuanto v4.0 – under the hood

InQuanto v4.0 is the most powerful version to date of our advanced quantum computational chemistry platform. It supports our users in applying quantum and classical computing methods to problems in chemistry and, increasingly, adjacent fields such as condensed matter physics.

Like previous versions of InQuanto, this one offers state-of-the-art algorithms, methods, and error handling techniques out of the box. Quantum error correction and detection have enabled rapid progress in quantum computing, such as groundbreaking demonstrations in partnership with Microsoft, in April and September 2024, of highly reliable “logical qubits”. Qubits are the core information-carrying components of a quantum computer and by forming them into an ensemble, they are more resistant to errors, allowing more complex problems to be tackled while producing accurate results. InQuanto continues to offer leading-edge quantum error detection protocols as standard and supports users to explore the potential of algorithms for fault-tolerant machines.

InQuanto v4.0 also marks the significant step of introducing native support for tensor networks using GPUs to accelerate simulations. In 2022, Quantinuum and NVIDIA teamed up on one of the quantum computing industry’s earliest quantum-classical collaborations. InQuanto v4.0 introduces classical tensor network methods via an interface with NVIDIA's cuQuantum SDK. Interfacing with cuQuantum enables the simulation of many quantum circuits via the use of GPUs for applications in chemistry that were previously inaccessible, particularly those with larger numbers of qubits.

“Hybrid quantum-classical supercomputing is accelerating quantum computational chemistry research. With Quantinuum’s InQuanto v4.0 platform and NVIDIA’s cuQuantum SDK, InQuanto users now have access to unique tensor-network-based methods, enabling large-scale and high-precision quantum chemistry simulations” - Tim Costa, Senior Director of HPC and Quantum Computing at NVIDIA

We are also responding to our users’ needs for more robust, enterprise-grade management of applications and data, by incorporating InQuanto into Quantinuum Nexus. This integration makes it far easier and more efficient to build hybrid workflows, decode and store data, and use powerful analytical methods to accelerate scientific and technical progress in critical fields in natural science.

Adding further capabilities, we recently announced our integration of InQuanto with Microsoft’s Azure Quantum Elements (AQE), allowing users to seamlessly combine AQE’s state-of-the-art HPC and AI methods with the enhanced quantum capabilities of InQuanto in a single workflow. The first end-to-end workflow using HPC, AI and quantum computing was demonstrated by Microsoft using AQE and Quantinuum Systems hardware, achieving chemical accuracy and demonstrating the advantage of logical qubits compared to physical qubits in modeling a catalytic reaction.

Where InQuanto takes us next

In the coming years, we expect to see scientific and economic progress using the powerful combination of quantum computing, HPC, and artificial intelligence. Each of these computing paradigms contributes to our ability to solve important problems. Together, their combined impact is far greater than the sum of their parts, and we recognize that these have the potential to drive valuable computational innovation in industrial use-cases that really matter, such as in energy generation, transmission and storage, and in chemical processes essential to agriculture, transport, and medicine.

Building on our recent hardware roadmap announcement, which supports scientific quantum advantage and a commercial tipping point in 2029, we are demonstrating the value of owning and building out the full quantum computing stack with a unified goal of accelerating quantum computing, integrating with HPC and AI resources where it shows promise, and using the power of the “quantum supercomputer” to make a positive difference in fundamental and industrial chemistry and related domains.

In close collaboration with our customers, we are driving towards systems capable of supporting quantum advantage and unlocking tangible and significant business value.

To access InQuanto today, including Quantinuum Systems and third-party hardware and emulators, visit: https://www.quantinuum.com/products-solutions/inquanto 

To get started with Quantinuum Nexus, which meets all your quantum computing needs across Quantinuum Systems and third-party backends, visit: https://www.quantinuum.com/products-solutions/nexus 

To find out more and access Quantinuum Systems, visit: https://www.quantinuum.com/products-solutions/quantinuum-systems 

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
|
partnership
November 17, 2025
Quantinuum Powering Hybrid Quantum AI Supercomputing with NVIDIA

Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges. 

The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research. 

We are also working with NVIDIA to adopt  NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction. 

In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.

The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including  the development of breakthrough quantum-enhanced AI applications.

A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.

From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.

partnership
All
Blog
|
technical
November 13, 2025
From Memory to Logic

By Dr. Noah Berthusen

The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.

Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.

Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.

Building on prior error correcting codes

A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.

Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.

The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.

Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.

technical
All
Blog
|
events
November 12, 2025
Quantinuum at SC25: Advancing the Integration of Quantum and High-Performance Computing

Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.

At this year’s conference, from November 16th – 21st in St. Louis, Missouri, Quantinuum showcased how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.

Quantinuum in the Expo Hall

The Quantinuum team was on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum. Folks stopped by our booth to see: 

  • Live demo unit of our quantum hardware
  • Our new Helios replica, providing an up-close look at the design behind our next-generation system
  • The Helios chip, highlighting the innovation driving the world’s most advanced trapped-ion quantum computers

Our quantum computing experts hosted daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.

Speaking Sessions at SC25

Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:

Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST

During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.

BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST

Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.

events
All