Introducing LAMBEQ

A Toolkit for Quantum Natural Language Processing

November 29, 2021
The new software development toolkit for quantum natural language processing tested and benchmarked on System Model H1 technology


Telling Alexa to play “Schrodinger’s Cat” by Tears for Fears. Asking Siri for directions to a quantum-themed bar or restaurant. A smart phone autocorrecting a word in a text message.

These are everyday applications of natural language processing – NLP for short – a field of artificial intelligence that focuses on training computers to understand words and conversations with the same reasoning as humans.

NLP technologies have advanced rapidly in recent years with the help of increasingly powerful computing clusters that can run language models that examine reams of text and count how often certain words appear. These models train devices to retrieve information, annotate text, translate words from one language to another, answer questions, and perform other tasks.

The next step is to “teach” computers to infer meaning, understand nuance, and grasp the context of conversations. To do that, however, requires massive computational resources and multiple algorithms or data structures.

A United Kingdom-based quantum computing company believes the answer lies with qubits, superposition, and entanglement.

Cambridge Quantum recently released lambeq, a new open-source software development toolkit, that enables researchers to convert sentences into quantum circuits that can be run on quantum computers. It is the first toolkit developed specifically for quantum natural language processing – or QNLP - and was tested on System Model H1 technology before it was released.

The software takes the text, parses it, and then uses linguistics and mathematics to differentiate between a verb, noun, preposition, adjectives, etc., and label them to understand the relationships between words.

Cambridge Quantum researchers tested 30 sentences on the System Model H1, which was able to classify words correctly 87 percent of the time.

“We deem that a success,” said Konstantinos Meichannetzidis, a member of the CQ team. “We found that our software works well with the Honeywell technology and were able to benchmark the performance of this quantum device.”

The lambeq project also represented a first for Honeywell Quantum Solutions. It was the first QNLP problem run on the System Model H1 hardware.

“We are really excited to be a part of this work and contribute to the development of this important toolkit,” said Tony Uttley, president of Honeywell Quantum Solutions. “Applications like this help us test our system and understand how well it performs solving different problems.”

(Honeywell Quantum Solutions and Cambridge Quantum have a long-standing history of partnering together on research and other projects that benefit end-customers. The two entities announced in June they are seeking regulatory approval to combine to form a new company.)

Why QNLP?

For humans, decoding conversations to understand meaning is a complex process. We infer meaning through tone of voice, body language, context, location, and other factors. For computers, which do not rely on heuristics, decoding language is even more complex.

The only way to create some sort of “meaning-aware” NLP is to explicitly encode compositional, semantic sentence structure into language models. To do this on a classical computer, however, requires massive computational resources, which are costly, and would likely still take months to process.

Quantum computers, on the other hand, run calculations and crunch data very differently.

They harness unique properties of quantum physics, specifically superposition and entanglement, to store and process information. Because of that, these systems can examine problems with multiple states and evaluate a large space of possible answers simultaneously.

What this means in terms of natural language processing is that quantum computers are likely to go beyond counting how often certain words appear or are used together. As noted above, quantum computers can identify words, label them as a noun, verb, preposition, etc., and understand the relationship between words. (lambeq uses the Distributional Compositional Categorical – or DisCoCat – model to do this.)

This enables the computer to infer meaning, and also provides insight into how and why the computer made connections between words. The latter is important for validating data and also expanding the use of QNLP in regulated sectors such as finance, legal, and medicine where transparency is critical.

Built upon previous work

The Cambridge Quantum team has long explored how quantum computing can advance natural language processing, and has published extensively on the topic.

In December 2020, researchers released two foundational papers that demonstrated that QNLP is inherently meaning-aware and can successfully interpret questions and respond.

Earlier this year, the team performed the first NLP experiment conducted on a quantum computer by converting more than 100 sentences into quantum circuits using an IBM technology. Researchers successfully trained two NLP models to classify words in sentences.

The release of lambeq and the testing of the open-source toolkit on the Honeywell System Model H1 represents the next steps in their QNLP efforts.

“Our team has been involved in foundational work that explores how quantum computers can be used to solve some of the most intractable problems in artificial intelligence,” said Bob Coecke, Cambridge Quantum’s chief scientist.

“In various papers published over the course of the past year,” Coecke added, “We have not only provided details on how quantum computers can enhance NLP but also demonstrated that QNLP is ‘quantum native,’ meaning the compositional structure governing language is mathematically the same as that governing quantum systems. This will ultimately move the world away from the current paradigm of AI that relies on brute force techniques that are opaque and approximate.”

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!

If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.

The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.

Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.

Why this matters: Quantum AI, born native

This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.

Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.  

Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.

That’s what we’ve built.

What makes Quixer different?

Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.

Quixer is different: it’s not a translation – it's an innovation.

With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.

As quantum computing advances toward fault tolerance, Quixer is built to scale with it.

What’s next for Quixer?

We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.

This is just the beginning.

Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.

This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.

Stay tuned. The revolution is only getting started.

technical
All
Blog
June 9, 2025
Join us at ISC25

Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!

As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.

Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.

  • Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2²³ = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
  • Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by Jülich Research Centre.
  • We’ve laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
  • We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall

From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.

Presentations & Demos

Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.

Multicore World Networking Event

  • Monday, June 9 | 7:00pm – 9:00 PM at Hofbräu Wirtshaus Esplanade
    In partnership with Multicore World, join us for a Quantinuum-sponsored Happy Hour to explore the present and future of quantum computing with Quantinuum CCO, Dr. Nash Palaniswamy, and network with our team.
    Register here

H1 x CUDA-Q Demonstration

  • All Week at Booth B40
    We’re showcasing a live demonstration of NVIDIA’s CUDA-Q platform running on Quantinuum’s industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry.
    Register for a demo

HPC Solutions Forum

  • Wednesday, June 11 | 2:20 – 2:40 PM
    “Enabling Scientific Discovery with Generative Quantum AI” – Presented by Maud Einhorn, Technical Account Executive at Quantinuum, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!

Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.

We look forward to seeing you in Hamburg!

events
All
Blog
May 27, 2025
Teleporting to new heights

Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.

Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.

Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.

Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the Quantinuum's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.

This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.

Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.

This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.

technical
All