The marriage of AI and quantum computing is going to have a widespread and meaningful impact in many aspects of our lives, combining the strengths of both fields to tackle complex problems.
Quantum and AI are the ideal partners. At Quantinuum, we are developing tools to accelerate AI with quantum computers, and quantum computers with AI. According to recent independent analysis, our quantum computers are the world’s most powerful, enabling state-of-the-art approaches like Generative Quantum AI (Gen QAI), where we train classical AI models with data generated from a quantum computer.
We harness AI methods to accelerate the development and performance of our full quantum computing stack as opposed to simply theorizing from the sidelines. A paper in Nature Machine Intelligence reveals the results of a recent collaboration between Quantinuum and Google DeepMind to tackle the hard problem of quantum compilation.
The work shows a classical AI model supporting quantum computing by demonstrating its potential for quantum circuit optimization. An AI approach like this has the potential to lead to more effective control at the hardware level, to a richer suite of middleware tools for quantum circuit compilation, error mitigation and correction, even to novel high-level quantum software primitives and quantum algorithms.
The joint Quantinuum-Google DeepMind team of researchers tackled one of quantum computing’s most pressing challenges: minimizing the number of highly expensive but essential T-gates required for universal quantum computation. This is important specifically for the fault-tolerant regime, which is becoming increasingly relevant as quantum error correction protocols are being explored on rapidly developing quantum hardware. The joint team of researchers adapted AlphaTensor, Google DeepMind’s reinforcement learning AI system for algorithm discovery, which was introduced to improve the efficiency of linear algebra computations. The team introduced AlphaTensor-Quantum, which takes as input a quantum circuit and returns a new, more efficient one in terms of number of T-gates, with exactly the same functionality!
AlphaTensor-Quantum outperformed current state-of-the art optimization methods and matched the best human-designed solutions across multiple circuits in a thoroughly curated set of circuits, chosen for their prevalence in many applications, from quantum arithmetic to quantum chemistry. This breakthrough shows the potential for AI to automate the process of finding the most efficient quantum circuit. This is the first time that such an AI model has been put to the problem of T-count reduction at such a large scale.
The symbiotic relationship between quantum and AI works both ways. When AI and quantum computing work together, quantum computers could dramatically accelerate machine learning algorithms, whether by the development and application of natively quantum algorithms, or by offering quantum-generated training data that can be used to train a classical AI model.
Our recent announcement about Generative Quantum AI (Gen QAI) spells out our commitment to unlocking the value of the data generated by our H2 quantum computer. This value arises from the world’s leading fidelity and computational power of our System Model H2, making it impossible to exactly simulate on any classical computer, and therefore the data it generates – that we can use to train AI – is inaccessible by any other means. Quantinuum’s Chief Scientist for Algorithms and Innovation, Prof. Harry Buhrman, has likened accessing the first truly quantum-generated training data to the invention of the modern microscope in the seventeenth century, which revealed an entirely new world of tiny organisms thriving unseen within a single drop of water.
Recently, we announced a wide-ranging partnership with NVIDIA. It charts a course to commercial scale applications arising from the partnership between high-performance classical computers, powerful AI systems, and quantum computers that breach the boundaries of what previously could and could not be done. Our President & CEO, Dr. Raj Hazra spoke to CNBC recently about our partnership. Watch the video here.
As we prepare for the next stage of quantum processor development, with the launch of our Helios system in 2025, we’re excited to see how AI can help write more efficient code for quantum computers – and how our quantum processors, the most powerful in the world, can provide a backend for AI computations.
As in any truly symbiotic relationship, the addition of AI to quantum computing equally benefits both sides of the equation.
To read more about Quantinuum and Google DeepMind’s collaboration, please read the scientific paper here.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, according to McKinsey & Company, underscoring how today’s quantum computers are already delivering customer value in their current phase of development.
This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address.
Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction—a capability that, until now, has eluded the industry.
Quantinuum is the first—and only—company to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.
In this regard, Quantinuum is the first company to step from the so-called “NISQ” (noisy intermediate-scale quantum) era towards utility-scale quantum computers.
A quantum computer uses operations called gates to process information in ways that even today’s fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:
A system that can run both gates is classified as universal and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement ‘non-Clifford’ gates is not really a quantum computer.
A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. Quantinuum has the best and brightest scientists dedicated to keeping our systems’ error rates the lowest in the world.
For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing “a full gate set” with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and error rates near 10%—too high for any practical use.
Today, we have published two papers that establishes Quantinuum as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.
The first paper describes how scientists at Quantinuum used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any previously published result.
Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.
Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.
In the second paper, co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called “code switching”.
Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we’ve previously demonstrated full error correction and the other ingredients for universality.
In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than the best previous attempt with error correction. Notably, this process only cost 28 qubits instead of hundreds. This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.
Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.
With all of the required pieces now, finally, in place, we are ‘fully’ equipped to become the first company to perform universal fully fault-tolerant computing—just in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!