Quietly, and determinedly since 2019, we’ve been working on Generative Quantum AI. Our early focus on building natively quantum systems for machine learning has benefitted from and been accelerated by access to the world’s most powerful quantum computers, and quantum computers that cannot be classically simulated.
Our work additionally benefits from being very close to our Helios generation quantum computer, built in Colorado, USA. Helios is 1 trillion times more powerful than our H2 System, which is already significantly more advanced than all other quantum computers available.
While tools like ChatGPT have already made a profound impact on society, a critical limitation to their broader industrial and enterprise use has become clear. Classical large language models (LLMs) are computational behemoths, prohibitively huge and expensive to train, and prone to errors that damage their credibility.
Training models like ChatGPT requires processing vast datasets with billions, even trillions, of parameters. This demands immense computational power, often spread across thousands of GPUs or specialized hardware accelerators. The environmental cost is staggering—simply training GPT-3, for instance, consumed nearly 1,300 megawatt-hours of electricity, equivalent to the annual energy use of 130 average U.S. homes.
This doesn’t account for the ongoing operational costs of running these models, which remain high with every query.
Despite these challenges, the push to develop ever-larger models shows no signs of slowing down.
Enter quantum computing. Quantum technology offers a more sustainable, efficient, and high-performance solution—one that will fundamentally reshape AI, dramatically lowering costs and increasing scalability, while overcoming the limitations of today's classical systems.
At Quantinuum we have been maniacally focused on “rebuilding” machine learning (ML) techniques for Natural Language Processing (NLP) using quantum computers.
Our research team has worked on translating key innovations in natural language processing — such as word embeddings, recurrent neural networks, and transformers — into the quantum realm. The ultimate goal is not merely to port existing classical techniques onto quantum computers but to reimagine these methods in ways that take full advantage of the unique features of quantum computers.
We have a deep bench working on this. Our Head of AI, Dr. Steve Clark, previously spent 14 years as a faculty member at Oxford and Cambridge, and over 4 years as a Senior Staff Research Scientist at DeepMind in London. He works closely with Dr. Konstantinos Meichanetzidis, who is our Head of Scientific Product Development and who has been working for years at the intersection of quantum many-body physics, quantum computing, theoretical computer science, and artificial intelligence.
A critical element of the team’s approach to this project is avoiding the temptation to simply “copy-paste”, i.e. taking the math from a classical version and directly implementing that on a quantum computer.
This is motivated by the fact that quantum systems are fundamentally different from classical systems: their ability to leverage quantum phenomena like entanglement and interference ultimately changes the rules of computation. By ensuring these new models are properly mapped onto the quantum architecture, we are best poised to benefit from quantum computing’s unique advantages.
These advantages are not so far in the future as we once imagined – partially driven by our accelerating pace of development in hardware and quantum error correction.
The ultimate problem of making a computer understand a human language isn’t unlike trying to learn a new language yourself – you must hear/read/speak lots of examples, memorize lots of rules and their exceptions, memorize words and their meanings, and so on. However, it’s more complicated than that when the “brain” is a computer. Computers naturally speak their native languages very well, where everything from machine code to Python has a meaningful structure and set of rules.
In contrast, “natural” (human) language is very different from the strict compliance of computer languages: things like idioms confound any sense of structure, humor and poetry play with semantics in creative ways, and the language itself is always evolving. Still, people have been considering this problem since the 1950’s (Turing’s original “test” of intelligence involves the automated interpretation and generation of natural language).
Up until the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing.
Initial ML approaches were largely “statistical”: by analyzing large amounts of text data, one can identify patterns and probabilities. There were notable successes in translation (like translating French into English), and the birth of the web led to more innovations in learning from and handling big data.
What many consider “modern” NLP was born in the late 2000’s, when expanded compute power and larger datasets enabled practical use of neural networks. Being mathematical models, neural networks are “built” out of the tools of mathematics; specifically linear algebra and calculus.
Building a neural network, then, means finding ways to manipulate language using the tools of linear algebra and calculus. This means representing words and sentences as vectors and matrices, developing tools to manipulate them, and so on. This is precisely the path that researchers in classical NLP have been following for the past 15 years, and the path that our team is now speedrunning in the quantum case.
The first major breakthrough in neural NLP came roughly a decade ago, when vector representations of words were developed, using the frameworks known as Word2Vec and GloVe (Global Vectors for Word Representation). In a recent paper, our team, including Carys Harvey and Douglas Brown, demonstrated how to do this in quantum NLP models – with a crucial twist. Instead of embedding words as real-valued vectors (as in the classical case), the team built it to work with complex-valued vectors.
In quantum mechanics, the state of a physical system is represented by a vector residing in a complex vector space, called a Hilbert space. By embedding words as complex vectors, we are able to map language into parameterized quantum circuits, and ultimately the qubits in our processor. This is a major advance that was largely under appreciated by the AI community but which is now rapidly gaining interest.
Using complex-valued word embeddings for QNLP means that from the bottom-up we are working with something fundamentally different. This different “geometry” may provide advantage in any number of areas: natural language has a rich probabilistic and hierarchical structure that may very well benefit from the richer representation of complex numbers.
Another breakthrough comes from the development of quantum recurrent neural networks (RNNs). RNNs are commonly used in classical NLP to handle tasks such as text classification and language modeling.
Our team, including Dr. Wenduan Xu, Douglas Brown, and Dr. Gabriel Matos, implemented a quantum version of the RNN using parameterized quantum circuits (PQCs). PQCs allow for hybrid quantum-classical computation, where quantum circuits process information and classical computers optimize the parameters controlling the quantum system.
In a recent experiment, the team used their quantum RNN to perform a standard NLP task: classifying movie reviews from Rotten Tomatoes as positive or negative. Remarkably, the quantum RNN performed as well as classical RNNs, GRUs, and LSTMs, using only four qubits. This result is notable for two reasons: it shows that quantum models can achieve competitive performance using a much smaller vector space, and it demonstrates the potential for significant energy savings in the future of AI.
In a similar experiment, our team partnered with Amgen to use PQCs for peptide classification, which is a standard task in computational biology. Working on the Quantinuum System Model H1, the joint team performed sequence classification (used in the design of therapeutic proteins), and they found competitive performance with classical baselines of a similar scale. This work was our first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins, and helped us to elucidate the route toward larger-scale applications in this and related fields, in line with our hardware development roadmap.
Transformers, the architecture behind models like GPT-3, have revolutionized NLP by enabling massive parallelism and state-of-the-art performance in tasks such as language modeling and translation. However, transformers are designed to take advantage of the parallelism provided by GPUs, something quantum computers do not yet do in the same way.
In response, our team, including Nikhil Khatri and Dr. Gabriel Matos, introduced “Quixer”, a quantum transformer model tailored specifically for quantum architectures.
By using quantum algorithmic primitives, Quixer is optimized for quantum hardware, making it highly qubit efficient. In a recent study, the team applied Quixer to a realistic language modeling task and achieved results competitive with classical transformer models trained on the same data.
This is an incredible milestone achievement in and of itself.
This paper also marks the first quantum machine learning model applied to language on a realistic rather than toy dataset.
This is a truly exciting advance for anyone interested in the union of quantum computing and artificial intelligence, and is in danger of being lost in the increased ‘noise’ from the quantum computing sector where organizations who are trying to raise capital will try to highlight somewhat trivial advances that are often duplicative.
Carys Harvey and Richie Yeung from Quantinuum in the UK worked with a broader team that explored the use of quantum tensor networks for NLP. Tensor networks are mathematical structures that efficiently represent high-dimensional data, and they have found applications in everything from quantum physics to image recognition. In the context of NLP, tensor networks can be used to perform tasks like sequence classification, where the goal is to classify sequences of words or symbols based on their meaning.
The team performed experiments on our System Model H1, finding comparable performance to classical baselines. This marked the first time a scalable NLP model was run on quantum hardware – a remarkable advance.
The tree-like structure of quantum tensor models lends itself incredibly well to specific features inherent to our architecture such as mid-circuit measurement and qubit re-use, allowing us to squeeze big problems onto few qubits.
Since quantum theory is inherently described by tensor networks, this is another example of how fundamentally different quantum machine learning approaches can look – again, there is a sort of “intuitive” mapping of the tensor networks used to describe the NLP problem onto the tensor networks used to describe the operation of our quantum processors.
While it is still very early days, we have good indications that running AI on quantum hardware will be more energy efficient.
We recently published a result in “random circuit sampling”, a task used to compare quantum to classical computers. We beat the classical supercomputer in time to solution as well as energy use – our quantum computer cost 30,000x less energy to complete the task than Frontier, the classical supercomputer we compared against.
We may see, as our quantum AI models grow in power and size, that there is a similar scaling in energy use: it’s generally more efficient to use ~100 qubits than it is to use ~10^18 classical bits.
Another major insight so far is that quantum models tend to require significantly fewer parameters to train than their classical counterparts. In classical machine learning, particularly in large neural networks, the number of parameters can grow into the billions, leading to massive computational demands.
Quantum models, by contrast, leverage the unique properties of quantum mechanics to achieve comparable performance with a much smaller number of parameters. This could drastically reduce the energy and computational resources required to run these models.
As quantum computing hardware continues to improve, quantum AI models may increasingly complement or even replace classical systems. By leveraging quantum superposition, entanglement, and interference, these models offer the potential for significant reductions in both computational cost and energy consumption. With fewer parameters required, quantum models could make AI more sustainable, tackling one of the biggest challenges facing the industry today.
The work being done by Quantinuum reflects the start of the next chapter in AI, and one that is transformative. As quantum computing matures, its integration with AI has the potential to unlock entirely new approaches that are not only more efficient and performant but can also handle the full complexities of natural language. The fact that Quantinuum’s quantum computers are the most advanced in the world, and cannot be simulated classically, gives us a unique glimpse into a future.
The future of AI now looks very much to be quantum and Quantinuum’s Gen QAI system will usher in the era in which our work will have meaningful societal impact.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
I continue to be inspired by our team's pioneering efforts to redefine what’s possible through quantum computing. With more than 550 dedicated employees, we’re constantly pushing the boundaries to uncover meaningful applications for this transformative technology.
This week marked one of my proudest moments: the announcement of a joint venture with Al Rabban Capital to accelerate the commercial adoption of quantum technology in Qatar and the Gulf region. This partnership lays the groundwork for up to USD $1 billion in investment from Qatar over the next decade in Quantinuum’s state-of-the-art quantum technologies, co-development of quantum computing applications tailored to regional needs, and workforce development. This collaboration is a major step forward in our strategy to expand our commercial reach through long-term, strategic alliances that foster economic growth in both the U.S. and Qatar.
I had the unique opportunity to attend a business roundtable in Doha with President Trump, U.S. and Qatari policymakers, and other industry leaders. The conversation centered on the importance of U.S.-Qatari relations and the role of shared commercial interests in strengthening that bond.
A recurring theme was innovation in Artificial Intelligence (AI), reinforcing the role that hybrid quantum-classical systems will play in enhancing AI capabilities across sectors. By integrating quantum computing, AI, and high-performance computing, we can unlock powerful new use cases critical to economic growth and national security.
We also addressed the growing energy demands of AI-powered data centers. Quantum computing offers a potential path forward here, as well. Our H2-1 system has demonstrated an estimated 30,000x reduction in power consumption compared to classical supercomputers, making it a highly efficient tool for solving complex computational challenges.
What struck me most about the conversations in Qatar was the emphasis on cooperation over competition. While quantum is often framed as a race, our partnership with Al Rabban Capital underscores the value of cross-border collaboration. As I noted in a recent Time Magazine article co-authored with Honeywell CEO Vimal Kapur, quantum computing isn’t just a technology—it’s a national capability. Countries that lead will shape how it is regulated, protected, and deployed. Our joint venture and this week’s dialogue reaffirm that both the U.S. and Qatar are taking the necessary first steps to lead in this space. Yet much work remains.
I believe we’re witnessing the emergence of a new kind of global alliance—one rooted not just in trade, but in shared technological advancement. Quantum computing holds the promise to unlock innovative solutions that will tackle challenges that have long been beyond reach. Realizing that promise will require visionary leadership, global collaboration, and a bold commitment to shaping the future together.
I was honored to attend today’s roundtable during the President’s State Visit to Qatar and to see our announcement featured as part of that engagement. This milestone reflects a shared commitment by the U.S. and Qatar to strengthen strategic ties, spur bilateral investment in future-defining industries, and foster technological leadership and shared prosperity.
Quantinuum’s expansion into the Gulf region, starting with Qatar, follows our successful growth in the U.S., U.K., Europe and Indo-Pacific. We will continue working across borders and sectors to accelerate the commercial adoption of quantum computing and realize quantum’s full potential—for the benefit of all!
Details of the JV are available in this link, along with the official White House communication.
Onward and Upward,
Rajeeb Hazra
Back in 2020, we made a promise to increase our Quantum Volume (QV), a measure of computational power, by 10x per year for 5 years.
Today, we’re pleased to share that we’ve followed through on our commitment: Our System Model H2 has reached a Quantum Volume of 2²³ = 8,388,608, proving not just that we always do what we say, but that our quantum computers are leading the world forward.
The QV benchmark was developed by IBM to represent a machine’s performance, accounting for things like qubit count, coherence times, qubit connectivity, and error rates. In IBM's words:
“the higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research."
Our announcement today is precisely what sets us apart from the competition. No one else has been bold enough to make a similar promise on such a challenging metric – and no one else has ever completed a five-year goal like this.
We chose QV because we believe it’s a great metric. For starters, it’s not gameable, like other metrics in the ecosystem. Also, it brings together all the relevant metrics in the NISQ era for moving towards fault tolerance, such as gate fidelity and connectivity.
Our path to achieve a QV of over 8 million was led in part by Dr. Charlie Baldwin, who studied under the legendary Ivan H. Deutsch. Dr. Baldwin has made his name as a globally renowned expert in quantum hardware performance over the past decade, and it is because of his leadership that we don’t just claim to be the best, but that we can prove we are the best.
Alongside the world’s biggest quantum volume, we have the industry’s most benchmarked quantum computers. To that point, the table below breaks down the leading commercial specs for each quantum computing architecture.
We’ve never shied away from benchmarking our machines, because we know the results will be impressive. It is our provably world-leading performance that has enabled us to demonstrate:
As we look ahead to our next generation system, Helios, Quantinuum’s Senior Director of Engineering, Dr. Brian Neyenhuis, reflects: “We finished our five-year commitment to Quantum Volume ahead of schedule, showing that we can do more than just maintain performance while increasing system size. We can improve performance while scaling.”
Helios’ performance will exceed that of our previous machines, meaning that Quantinuum will continue to lead in performance while following through on our promises.
As the undisputed industry leader, we’re racing against no one other than ourselves to deliver higher performance and to better serve our customers.
At the heart of quantum computing’s promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the Generative Quantum Eigensolver (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we’re not just feeding an AI more text from the internet; we’re giving it new and valuable data that can’t be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule’s ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force—testing every possible state and measuring its energy—because the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That’s where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H₂). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we’re the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems—from combinatorial optimization to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We’re already looking at applying GQE to more complex molecules—ones that can’t currently be solved with existing methods, and we’re exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.