Cambridge Researchers at Honeywell Quantum Solutions have turned problematic micromotion that jostles trapped ion qubits out of position into a plus.
The team recently demonstrated a technique that uses micromotion to shield nearby ions from stray photons released during mid-circuit measurement, a procedure in which lasers are used to check the quantum state of certain qubits and then reset them.
Mid-circuit measurement is a key capability in today’s early-stage quantum computers. Because the qubit’s state can be checked and then re-used, researchers can run more complex algorithms – such as the holoQUADS algorithm – with fewer qubits.
By “hiding” ions behind micromotion, Honeywell researchers significantly reduced the amount of “crosstalk” – errors caused by photons hitting neighboring qubits – that occurred when measuring qubits during an operation. (Details are available in a pre-print publication available on the arXiv.)
“We were able to reduce crosstalk by an order of magnitude,” said Dr. John Gaebler, Chief Scientist of Commercial Products at Honeywell Quantum Solutions, and lead author of the paper. “It is a significant reduction in crosstalk errors. Much more so than other methods we’ve used.”
The new technique represents another step toward reducing errors that occur in today’s trapped-ion quantum computers, which is necessary if the technology is to solve problems too complex for classical systems.
“For quantum computers to scale, we need to reduce errors throughout the system,” said Tony Uttley, President of Honeywell Quantum Solutions. “The new technique the Honeywell team developed will help us get there.”
Today’s quantum computing technologies are still in the early stage and are prone to “noise” - or interference - caused by qubits interacting with their environment and one another.
This noise causes errors to accumulate, corrupts information stored in and between physical qubits, and disrupts the quantum state in which qubits must exist to run calculations. (Scientists call this decoherence.)
Researchers are trying to eliminate or suppress as many of these errors as possible while also creating logical qubits, a collection of entangled physical qubits on which quantum information is distributed, stored, and protected.
By creating logical qubits, scientists can apply mathematical codes to detect and correct errors and eliminate noise as calculations are running. This multi-step process is known as quantum error correction (QEC). Honeywell researchers recently demonstrated they can detect and correct errors in real-time by applying multiple rounds of full cycles of quantum error correction.
Logical qubits and QEC are important elements to improving the accuracy and precision of quantum computers. But, Gaebler said, those methods are not enough on their own.
“Everything has to be working at a certain level before QEC can take you the rest of the way,” he said. “The more we can suppress or eliminate errors in the overall system, the more effective QEC will be and the fewer qubits we need to run complex calculations.”
In classical computing, bit flip errors occur when a binary digit, or bit, inadvertently switches from a zero to one or vice versa. Quantum computers experience a similar bit flip error as well as phase flip errors. Both errors cause qubits to lose their quantum state – or to decohere. In trapped ion quantum computing, one source of errors comes from the lasers used to implement gate operations and qubit measurements.
Though these lasers are highly controlled, unruly photons (small packets of light) still escape and bounce into neighboring ions causing “crosstalk” and decoherence.
Researchers use a variety of methods to protect these ions from crosstalk, especially during mid-circuit measurement where only a single qubit or a small subset of qubits is meant to be measured. With its quantum charged-coupled device (QCCD) architecture, the Honeywell team takes the approach of moving neighboring ions away from the qubit being fluoresced by a laser. But there is limited space along the device, which becomes even more compact as more qubits are added.
“Even when we move them more than 100 microns away, we still get more crosstalk than we prefer,” said Dr. Charlie Baldwin, a senior advanced physicist and co-author of the paper. “There is still some scattered light from the detection laser.”
The team hit on hiding neighboring ions from stray photons using micromotion potentials, which are caused by the oscillating electric fields used to “trap” these charged atoms. Micromotion is typically thought of as a nuisance with ion trapping, causing the ions to rapidly oscillate back and forth, and occurs when the ions are pushed out of the center of the trap by additional electric fields.
“Usually, we are trying to eliminate micromotion but in this case, we were able to use it to our benefit,” said Dr. Patty Lee, chief scientist at Honeywell Quantum Solutions.
The team’s goal is to reduce by 10 million the probability of a neighboring ion absorbing photons at 110 microns away. By moving neighboring ions and hiding them behind micromotion the Honeywell team is approaching that mark.
In their paper, Honeywell researchers delved into how and why hiding ions with micromotion works, including the ideal frequency of the oscillations. They also identified and characterized errors. (The basic physics behind the concept of hiding ions was first explored by the ion storage group at the National Institute of Standards and Technology.)
“Mid-circuit operations are a new feature in commercial quantum computing hardware, so we had to invent a new way to validate that the micromotion hiding technique was achieving the low level of crosstalk errors that we predicted,” said Dr. Charlie Baldwin.
Though the new method resulted in a significant reduction of crosstalk errors, the Honeywell team acknowledged there is further to go.
“Crosstalk is one of those scary errors for scaling,” Gaebler said. “It has to be controlled because it becomes more of a problem as you scale and add qubits. This is another tool that will help us scale and help us compact our systems and pack in as many qubits as we can.”
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.