

By Duncan Jones
In September, nearly 200 senior cybersecurity leaders from around the world convened to discuss the state of U.S. cybersecurity at the 2022 Billington Cybersecurity Summit. Topics around cybersecurity were varied and included discussions about moral asymmetry of today’s global threat actors, lessons learned from Ukraine and general discussions around all things that “keep us up at night” concerning cyber threats.
As a speaker at the Summit, I wanted to take a moment to share my take-aways from an important discussion that took place during our breakout session, “Future of Encryption: Moving to a Quantum Resistant World.” My esteemed fellow panelists from NSA, NIST, CMU and AWS exchanged insights as to where U.S. government agencies stand in their preparation for current and future threats to encryption, the likely hurdles they face, and the resources that exist to assist in the transition. Those responsible for moving their agency to a quantum-resistant world should find the following insights worth considering.
With the prospect of powerful quantum computers breaking known encryption methods on the horizon and with federal mandate NSM-10 now in place, the good news is that quantum-proof encryption is finally being discussed. The not-so-good-news is that it isn’t clear to cybersecurity practitioners what they need to do first. Understanding the threat is not nearly as difficult as understanding the timing, which seems to have left agency personnel at the starting gate of a planning process fraught with challenges – and urgency.
Why is the timeline so difficult to establish? Because there is no way of knowing when a quantum-based attack will take place. The Quantum-safe Security Working Group of the Cloud Security Alliance (CSA) chose the date, April 14, 2030, to represent “Y2Q,” also known as “Q-Day” – the moment secure IT infrastructure becomes vulnerable to the threat of a fault-tolerant quantum computer running Shor’s algorithm. The Biden Administration based its implementation timeline on the day that NIST announced the four winning algorithms for standardization. Then there is the “hack now, decrypt later” timeline which suggests that quantum-related attacks may already be underway.
Regardless of the final timeline or potential drivers, one thing that was clear to the panel attendees was that they need to start the transition now.
I get this question often and was not disappointed when one attendee asked, “How can I convince my agency leadership that migrating to quantum-proof encryption is a priority when they are still trying to tackle basic cyber threats?”
The panelists responded and agreed that the U.S. government’s data storage requirements are unique in that classification dates are typically 20 years. This means that systems in development today, that are typically fielded over the next 10 years, will actually have a storage shelf life of 30 years minimum. Those systems need to be “future-proofed” today, a term that should be effective when trying to convince agency leaders of the priority.
The need to future-proof is driven by a variety of scenarios, such as equipment and software upgrades. In general, it takes a long time (and perhaps even longer for government entities) to upgrade or change equipment, software, etc. It will take an extremely long time to update all of the software that has cryptography in place.
The panelists also agreed that given the extensive supply chain supporting federal systems, vendors are a critical component to the overall success of an agency’s future-proofing for the quantum age. In 10-15 years, there will be some government partner/vendor somewhere who will not have transitioned to quantum-proof encryption. For leaders who have not yet prioritized their agency’s cryptography migration, let them ponder that thought — and start to focus on the need to prepare.
The panel shared several past technology migrations that were similar in their minds to the adoption of quantum computing.
Y2K was similar to the looming quantum threat by both the urgency and scale of the government’s need to migrate systems. However, without a deadline assigned to implementing the encryption migration, Y2K is really only similar in scale.
The panelists also recalled when every company had to replace the SHA-1 hash function, but concluded that the amount of time, effort, and energy required to replace current encryption will be way more important than SHA-1 — and way more ubiquitous.
While previous technology migrations help to establish lessons learned for the government’s quantum-proof cryptography migration, the panel concluded that this go-round will have a very unique set of challenges — the likes of which organizations have never had to tackle before.
The consensus among panelists was that agencies need to first understand what data they have today and how vulnerable it is to attack. Data that is particularly sensitive, and vulnerable to the “hack-now, decrypt-later” attacks, should be prioritized above less sensitive data. For some organizations, this is a very challenging endeavor that they’ve never embarked upon before. Now is an opportune time to build inventory data and keep it up to date. From a planning and migration perspective, this is an agency’s chance to do it once and do it well.
It is important to assume from the start that the vast majority of organizations will need to migrate multiple times. Panelists emphasized the need for “crypto agility” that will enable future replacement of algorithms to be made easily. Crypto agility is about how easy it is to transition from one algorithm (or choice of parameters) to another. Organizations that prioritize long-term thinking should already be looking at this.
The panelists added that communicating with vendors early on in the planning process is vital. As one panelist explained, “A lot of our service providers, vendors, etc. will be flipping switches for us, but a lot won’t. Understanding what your priorities are for flipping the switch and communicating it to your vendors is important.”
Matt Scholl of NIST shared about the work that NCCOE is doing to provide guidance, tips, and to answer questions such as what are discovery tools and how do I budget? The Migration to Post-Quantum Cryptography project, announced in July 2022, is working to develop white papers, playbooks, demonstrations, tools that can help other organizations implement their conversions to post-quantum cryptography. Other resources that offer good guidance, according to Scholl, include recent CISA Guidance, DHS’ roadmap and the Canadian Centre for Cybersecurity.
One additional resource that has been extremely helpful for our CISO customers is Quantinuum’s CISO’s Guide to Post-Quantum Standardization. The guide outlines what CISOs from any organization should be doing now and provides a basic transition roadmap to follow.
The discussion wrapped up with the acknowledgement that quantum has finally become part of the mainstream cybersecurity discussion and that the future benefit of quantum computing far outweighs the challenges of transitioning to new cryptography. As a parting thought, I emphasized the wonderful opportunity that agencies have to rethink how they do things and encouraged attendees to secure management commitment and funding for this much-needed modernization.
I want to give a special thanks to my fellow panelists for the engaging discussion: Margaret Salter, Director, Applied Cryptography, AWS, Dr. Mark Sherman, Director, Cybersecurity Foundations, CMU, Matthew Scholl, Chief of the Computer Security Division, ITL, NIST, and Dr. Adrian Stanger, Cybersecurity Directorate Senior Cryptographic Authority NSA.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
From Monday through Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Register for a tutorial
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.
Quantinuum’s real world experiment, on the world’s most powerful quantum computer, is the largest of its kind— so large that no amount of classical computing could match it

In 1911, a student working under famed physicist Heike Kamerlingh Onnes made a discovery that would rewire our understanding of electricity. The student was studying the electrical resistance of wires, a seemingly simple question that held secrets destined to surprise the world.
Kamerlingh Onnes had recently succeeded in liquefying helium, a feat so impressive it earned him the Nobel Prize in Physics two years later. With this breakthrough, scientists could now immerse other materials in a cold bath of liquid Helium, cooling things to unprecedented temperatures and observing their behavior.
Many theories existed about what would happen to a wire at such low temperatures. Lord Kelvin predicted that electrons would freeze in place, making the resistance infinite and stopping the conduction of electricity. Others expected resistance to decrease linearly with temperature—a hypothesis that led to thermometer designs still in use today.
When the student cooled a mercury wire to 3.6 degrees above absolute zero, he found something remarkable: the electrical resistivity suddenly vanished.
Onnes quickly devised an ingenious experiment: as a diligent researcher, he knew that he needed to validate these surprising findings. He took a closed loop of wire, set a current running through it, and watched as it flowed endlessly without fading—a type of perpetual motion that seemed to defy everything we know about physics. And so, superconductivity was born.
More than a century later, all known superconductors still require extreme conditions like brutal cold or high pressure. If we could instead design a material that superconducts at room temperature, and under normal conditions, our world would be profoundly reshaped. “Room temperature superconductivity”, as it is generally called, would enable a raft of technological breakthroughs from affordable MRI machines to nearly lossless power grids.
Designing such a material means answering many open questions, and scientists are pursuing diverse strategies to find answers. One promising approach is light-induced superconductivity. In one astonishing study, researchers at the Max Planck Institute in Hamburg used light to entice a material that normally superconducts at roughly -180 °C to superconduct at room temperature - but only for a few picoseconds. This effect raised new questions: how does light achieve something that scientists have been grappling with for decades? What is the microscopic mechanism behind this phenomenon? Could understanding it unlock practical room-temperature superconductors?
Physics is a surprisingly profound field when you stop to think about it. At its core lies the idea that nature speaks the language of mathematics—and that by discovering the right equations, we can reveal her secrets. As bold as that sounds, history has proven it true time and again. Whenever we peek behind the veil; mathematics is there.
To understand a phenomena like superconductivity, physicists first need a mathematical model, or a set of equations that describe how it works. With the right model, they can predict and even design new superconductors that operate under more practical conditions. This is a key frontier in the search for room temperature superconductors, one of science’s holy grails.
Since the discovery of superconductivity, a lot of work has gone into finding this right model – one that can act as a sort of ‘Rosetta stone’ for harnessing this phenomenon. One of the best bets for describing high temperature superconductors like the one in the Hamburg study is called the “non-equilibrium Fermi-Hubbard” model, which describes how electrons interact and move in a crystal.
A surprising element of models that describe superconductivity is the prediction that electrons ‘pair up’ when the material becomes superconducting, dancing around in a waltz, two at a time. These pairs are referred to as “cooper pairs” after the famous physicist Leon Cooper. Now, scientists studying superconductors look for “pairing correlations”, a key signature of superconductivity.
Even armed with the Fermi-Hubbard model, light-induced superconductivity has been very difficult to study. The world’s most powerful supercomputers can only handle very small versions, limiting their utility. Even quantum platforms, like analog simulators, limit researchers to observing ‘average’ quantities and obscuring the microscopic details that are crucial for unravelling this mystery.
Light-induced superconductivity has proved challenging to study with quantum computers as well, as doing so requires low error rates, many qubits, and extreme flexibility to measure the fickle symptoms of superconductivity.
That was, until now: Quantinuum’s Helios is one of the first machines in the world able to handle the complexity of the non-equilibrium Fermi-Hibbard model at scales previously out of reach.
Before Helios, we were limited to small explorations of this model, stalling research on this critical frontier. Now, with Helios, we have a quantum computer uniquely suited for this problem. With a novel fermionic encoding and using up to 90 qubits (72 system qubits plus 18 ancilla), Helios can simulate the dynamics of a 6×6 lattice — a system so large that its full quantum state spans over 2^72 dimensions.

Using Helios to study a system like this offers researchers a sort of “qubit-based laboratory.” Capable of handling complex quantum mechanical effects better than classical computers, Helios allows researchers to thoroughly explore phenomena like this without wasting expensive laboratory time and materials, or spending lots of money and energy running it on a supercomputer.
Our qubit-based laboratory is a dream come true for several reasons. First, it allows arbitrary state preparation – preparing states far from equilibrium, a challenging task for classical computers. Second, it allows for meaningfully long ‘dynamical simulation’ – seeing how the state evolves in time as entanglement spreads and complexity increases. This is notoriously difficult for classical computers, in part due to their difficulty with handling distinctly quantum phenomena like entanglement. Finally, it allows for flexible measurements and experimental parameters – you can measure any observable, including critical “off-diagonal” observables that carry the signature of superconductivity, and simulate any system, such as those with laser pulses or electric fields.
This last point is the most significant. While analog quantum simulators, like cold atom systems, can take snapshots of atom positions or measure densities, they struggle with off-diagonal observables—the very ones that signal the formation of Cooper pairs in superconductors.
In our work, we've simulated three different regimes of the Fermi-Hubbard model and successfully measured non-zero superconducting pairing correlations — a first for any quantum computing platform.
We began by preparing a low-energy state of the model at half-filling — a standard benchmark for testing quantum simulations. Then, using simulated laser pulses or electric fields, we perturbed the system and observed how it responded.
After these perturbations, we measured a notable increase in the so-called “eta” pairing correlations, a mathematical signature of superconducting behavior. These results prove that our computers can help us understand light-induced superconductivity, such as the results from the Max Planck researchers. However, unlike those physical experiments, Helios offers a new level of control and insight. By tuning every aspect of the simulation — from pulse shape, to field strength, to lattice geometry — researchers can explore scenarios that are completely inaccessible to real materials or analog simulators.
Why does any of this matter? If we could predict which materials will become superconducting — and at what temperature, field, or current — it would transform how we search for new superconductors. Instead of trial-and-error in the lab, scientists could design and test new materials digitally first, saving huge amounts of time and money.
In the long run, Helios and its successors will become essential tools for materials science — not just confirming theories but generating new ones. And perhaps, one day, they’ll help us crack the code behind room-temperature superconductors.
Until then, the quantum revolution continues, one entangled pair at a time.