KPMG and Microsoft join Quantinuum in simplifying quantum algorithm development via the cloud

The QIR Alliance, an international effort to enhance platform interoperability and enhance the work of quantum computing developers, has announced a milestone in the industry-wide effort to accelerate adoption

March 23, 2023

In 1952, facing opposition from scientists who disbelieved her thesis that computer programming could be made more useful by using English words, the mathematician and computer scientist Grace Hopper published her first paper on compilers and wrote a precursor to the modern compiler, the A-0, while working at Remington Rand.

Over subsequent decades, the principles of compilers, whose task it is to translate between high level programming languages and machine code, took shape and new methods were introduced to support their optimization. One such innovation was the intermediate representation (IR), which was introduced to manage the complexity of the compilation process, enabling compilers to represent the program without loss of information, and to be broken up into modular phases and components.

This developmental path spawned the modern computer industry, with languages that work across hardware systems, middleware, firmware, operating systems, and software applications. It has also supported the emergence of the huge numbers of small businesses and professionals who make a living collaborating to solve problems using code that depends on compilers to control the underlying computing hardware.

Now, a similar story is unfolding in quantum computing. There are efforts around the world to make it simpler for engineers and developers across many sectors to take advantage of quantum computers by translating between high level coding languages and tools, and quantum circuits — the combinations of gates that run on quantum computers to generate solutions. Many of these efforts focus on hybrid quantum-classical workflows, which allow a problem to be solved by taking advantage of the strengths of different modes of computation, accessing central processing units (CPUs), graphical processing units (GPUs) and quantum processing units (QPUs) as needed.

Microsoft is a significant contributor to this burgeoning quantum ecosystem, providing access to multiple quantum computing systems through Azure Quantum, and a founding member of the QIR Alliance, a cross-industry effort to make quantum computing source code portable across different hardware systems and modalities and to make quantum computing more useful to engineers and developers. QIR offers an interoperable specification for quantum programs, including a hardware profile designed for Quantinuum’s H-Series quantum computers, and has the capacity to support cross-compiling quantum and classical workflows, encouraging hybrid use-cases.

As one of the largest integrated quantum computing companies in the world, Quantinuum was excited to become a QIR steering member alongside partners including Nvidia, Oak Ridge National Laboratory, Quantum Circuits Inc., and Rigetti Computing. Quantinuum supports multiple open-source eco-system tools including its own family of open-source software development kits and compilers, such as TKET for general purpose quantum computation and lambeq for quantum natural language processing.

Rapid progress with KPMG and Microsoft

As founding members of QIR, Quantinuum recently worked with Microsoft Azure Quantum alongside KPMG on a project that involved Microsoft’s Q#, a stand-alone language offering a high level of abstraction and Quantinuum’s System Model H1, Powered by Honeywell. The Q# language has been designed for the specific needs of quantum computing and provides a high-level of abstraction enabling developers to seamlessly blend classical and quantum operations, significantly simplifying the design of hybrid algorithms. 

KPMG’s quantum team wanted to translate an existing algorithm into Q#, and to take advantage of the unique and differentiating capabilities of Quantinuum’s H-Series, particularly qubit reuse, mid-circuit measurement and all-to-all connectivity. System Model H1 is the first generation trapped-ion based quantum computer built using the quantum charge-coupled device (QCCD) architecture. KPMG accessed the H1-1 QPU with 20 fully connected qubits. H1-1 recently achieved a Quantum Volume of 32,768, demonstrating a new high-water mark for the industry in terms of computation power as measured by quantum volume.

Q# and QIR offered an abstraction from hardware specific instructions, allowing the KPMG team, led by Michael Egan, to make best use of the H-Series and take advantage of runtime support for measurement-conditioned program flow control, and classical calculations within runtime.

Nathan Rhodes of the KPMG team wrote a tutorial about the project to demonstrate how an algorithm writer would use the KPMG code step-by-step as well as the particular features of QIR, Q# and the H-Series. It is the first time that code from a third party will be available for end users on Microsoft’s Azure portal.

Microsoft recently announced the roll-out of integrated quantum computing on Azure Quantum, an important milestone in Microsoft’s Hybrid Quantum Computing Architecture, which provides tighter integration between quantum and classical processing. 

Fabrice Frachon, Principal PM Lead, Azure Quantum, described this new Azure Quantum capability as a key milestone to unlock a new generation of hybrid algorithms on the path to scaled quantum computing.

The demonstration

The team ran an algorithm designed to solve an estimation problem, a promising use case for quantum computing, with potential application in fields including traffic flow, network optimization, energy generation, storage, and distribution, and to solve other infrastructure challenges. The iterative phase estimation algorithm1 was compiled into quantum circuits from code written in a Q# environment with the QIR toolset, producing a circuit with approximately 500 gates, including 111 2-Qubit gates, running across three qubits with one reused three times, and achieving a fidelity of 0.92. This is possible because of the high gate fidelity and the low SPAM error which enables qubit reuse.

The results compare favorably with the more standard Quantum Phase Estimation version described in “Quantum computation and quantum information,” by Michael A. Nielsen and Isaac Chuang.

Quantinuum’s H1 had five capabilities that were crucial to this project:

  1. Qubit reuse
  2. Mid-circuit measurement
  3. Bound loop (a restriction on how many times the system will do the iterative circuit)
  4. Classical computation
  5. Nested functions

The project emphasized the importance of companies experimenting with quantum computing, so they can identify any possible IT issues early on, understanding the development environment and how quantum computing integrates with current workflows and processes.

As the global quantum ecosystem continues to advance, collaborative efforts like QIR will play a crucial role in bringing together industrial partners seeking novel solutions to challenging problems, talented developers, engineers, and researchers, and quantum hardware and software companies, which will continue to add deep scientific and engineering knowledge and expertise.

  1. Phys. Rev. A 76, 030306(R) (2007) - Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark (aps.org)
About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
July 2, 2025
Cracking the code of superconductors: Quantum computers just got closer to the dream

In a new paper in Nature Physics, we've made a major breakthrough in one of quantum computing’s most elusive promises: simulating the physics of superconductors. A deeper understanding of superconductivity would have an enormous impact: greater insight could pave the way to real-world advances, like phone batteries that last for months, “lossless” power grids that drastically reduce your bills, or MRI machines that are widely available and cheap to use.  The development of room-temperature superconductors would transform the global economy.

A key promise of quantum computing is that it has a natural advantage when studying inherently quantum systems, like superconductors. In many ways, it is precisely the deeply ‘quantum’ nature of superconductivity that makes it both so transformative and so notoriously difficult to study.

Now, we are pleased to report that we just got a lot closer to that ultimate dream.

Making the impossible possible

To study something like a superconductor with a quantum computer, you need to first “encode” the elements of the system you want to study onto the qubits – in other words, you want to translate the essential features of your material onto the states and gates you will run on the computer.

For superconductors in particular, you want to encode the behavior of particles known as “fermions” (like the familiar electron). Naively simulating fermions using qubits will result in garbage data, because qubits alone lack the key properties that make a fermion so unique.

Until recently, scientists used something called the “Jordan-Wigner” encoding to properly map fermions onto qubits. People have argued that the Jordan-Wigner encoding is one of the main reasons fermionic simulations have not progressed beyond simple one-dimensional chain geometries: it requires too many gates as the system size grows.  

Even worse, the Jordan-Wigner encoding has the nasty property that it is, in a sense, maximally non-fault-tolerant: one error occurring anywhere in the system affects the whole state, which generally leads to an exponential overhead in the number of shots required. Due to this, until now, simulating relevant systems at scale – one of the big promises of quantum computing – has remained a daunting challenge.

Theorists have addressed the issues of the Jordan-Wigner encoding and have suggested alternative fermionic encodings. In practice, however, the circuits created from these alternative encodings come with large overheads and have so far not been practically useful.

We are happy to report that our team developed a new way to compile one of the new, alternative, encodings that dramatically improves both efficiency and accuracy, overcoming the limitations of older approaches. Their new compilation scheme is the most efficient yet, slashing the cost of simulating fermionic hopping by an impressive 42%. On top of that, the team also introduced new, targeted error mitigation techniques that ensure even larger systems can be simulated with far fewer computational "shots"—a critical advantage in quantum computing.

Using their innovative methods, the team was able to simulate the Fermi-Hubbard model—a cornerstone of condensed matter physics— at a previously unattainable scale. By encoding 36 fermionic modes into 48 physical qubits on System Model H2, they achieved the largest quantum simulation of this model to date.

This marks an important milestone in quantum computing: it demonstrates that large-scale simulations of complex quantum systems, like superconductors, are now within reach.

Unlocking the Quantum Age, One Breakthrough at a Time

This breakthrough doesn’t just show how we can push the boundaries of what quantum computers can do; it brings one of the most exciting use cases of quantum computing much closer to reality. With this new approach, scientists can soon begin to simulate materials and systems that were once thought too complex for the most powerful classical computers alone. And in doing so, they’ve unlocked a path to potentially solving one of the most exciting and valuable problems in science and technology: understanding and harnessing the power of superconductivity.

The future of quantum computing—and with it, the future of energy, electronics, and beyond—just got a lot more exciting.

technical
All
Blog
July 1, 2025
Quantinuum with partners Princeton and NIST deliver seminal result in quantum error correction

In an experiment led by Princeton and NIST, we’ve just delivered a crucial result in Quantum Error Correction (QEC), demonstrating key principles of scalable quantum computing developed by Drs Peter Shor, Dorit Aharonov, and Michael Ben-Or. In this latest paper, we showed that by using “concatenated codes” noise can be exponentially suppressed — proving that quantum computing will scale.

When noise is low enough, the results are transformative

Quantum computing is already producing results, but high-profile applications like Shor’s algorithm—which can break RSA encryption—require error rates about a billion times lower than what today’s machines can achieve.

Achieving such low error rates is a holy grail of quantum computing. Peter Shor was the first to hypothesize a way forward, in the form of quantum error correction. Building on his results, Dorit Aharanov and Michael Ben-Or proved that by concatenating quantum error correcting codes, a sufficiently high-quality quantum computer can suppress error rates arbitrarily at the cost of a very modest increase in the required number of qubits.  Without that insight, building a truly fault-tolerant quantum computer would be impossible.

Their results, now widely referred to as the “threshold theorem”, laid the foundation for realizing fault-tolerant quantum computing. At the time, many doubted that the error rates required for large-scale quantum algorithms could ever be achieved in practice. The threshold theorem made clear that large scale quantum computing is a realistic possibility, giving birth to the robust quantum industry that exists today.

Realizing a legendary vision

Until now, nobody has realized the original vision for the threshold theorem. Last year, Google performed a beautiful demonstration of the threshold theorem in a different context (without concatenated codes). This year, we are proud to report the first experimental realization of that seminal work—demonstrating fault-tolerant quantum computing using concatenated codes, just as they envisioned.

The benefits of concatenation

The team demonstrated that their family of protocols achieves high error thresholds—making them easier to implement—while requiring minimal ancilla qubits, meaning lower overall qubit overhead. Remarkably, their protocols are so efficient that fault-tolerant preparation of basis states requires zero ancilla overhead, making the process maximally efficient.

This approach to error correction has the potential to significantly reduce qubit requirements across multiple areas, from state preparation to the broader QEC infrastructure. Additionally, concatenated codes offer greater design flexibility, which makes them especially attractive. Taken together, these advantages suggest that concatenation could provide a faster and more practical path to fault-tolerant quantum computing than popular approaches like the surface code.

We’re always looking forward

From a broader perspective, this achievement highlights the power of collaboration between industry, academia, and national laboratories. Quantinuum’s commercial quantum systems are so stable and reliable that our partners were able to carry out this groundbreaking research remotely—over the cloud—without needing detailed knowledge of the hardware. While we very much look forward to welcoming them to our labs before long, its notable that they never need to step inside to harness the full capabilities of our machines.

As we make quantum computing more accessible, the rate of innovation will only increase. The era of plug-and-play quantum computing has arrived. Are you ready?

technical
All
Blog
June 26, 2025
Quantinuum Overcomes Last Major Hurdle to Deliver Scalable Universal Fault-Tolerant Quantum Computers by 2029

Quantum computing companies are poised to exceed $1 billion in revenues by the close of 2025, according to McKinsey & Company, underscoring how today’s quantum computers are already delivering customer value in their current phase of development.

This figure is projected to reach upwards of $37 billion by 2030, rising in parallel with escalating demand, as well as with the scale of the machines and the complexity of problem sets of which they will be able to address.  

Several systems on the market today are fault-tolerant by design, meaning they are capable of suppressing error-causing noise to yield reliable calculations. However, the full potential of quantum computing to tackle problems of true industrial relevance, in areas like medicine, energy, and finance, remains contingent on an architecture that supports a fully fault-tolerant universal gate set with repeatable error correction—a capability that, until now, has eluded the industry.  

Quantinuum is the first—and only—company to achieve this critical technical breakthrough, universally recognized as the essential precursor to scalable, industrial-scale quantum computing. This milestone provides us with the most de-risked development roadmap in the industry and positions us to fulfill our promise to deliver our universal, fully fault-tolerant quantum computer, Apollo, by 2029.

In this regard, Quantinuum is the first company to step from the so-called “NISQ” (noisy intermediate-scale quantum) era towards utility-scale quantum computers.

Unpacking our achievement: first, a ‘full’ primer

A quantum computer uses operations called gates to process information in ways that even today’s fastest supercomputers cannot. The industry typically refers to two types of gates for quantum computers:

  • Clifford gates, which can be easily simulated by classical computers, and are relatively easy to implement; and
  • Non-Clifford gates, which are usually harder to implement, but are required to enable true quantum computation (when combined with their siblings).

A system that can run both gates is classified as universal and has the machinery to tackle the widest range of problems. Without non-Clifford gates, a quantum computer is non-universal and restricted to smaller, easier sets of tasks - and it can always be simulated by classical computers. This is like painting with a full palette of primary colors, versus only having one or two to work with. Simply put, a quantum computer that cannot implement ‘non-Clifford’ gates is not really a quantum computer.

A fault-tolerant, or error-corrected, quantum computer detects and corrects its own errors (or faults) to produce reliable results. Quantinuum has the best and brightest scientists dedicated to keeping our systems’ error rates the lowest in the world.

For a quantum computer to be fully fault-tolerant, every operation must be error-resilient, across Clifford gates and non-Clifford gates, and thus, performing “a full gate set” with error correction. While some groups have performed fully fault-tolerant gate sets in academic settings, these demonstrations were done with only a few qubits and error rates near 10%—too high for any practical use.

Today, we have published two papers that establishes Quantinuum as the first company to develop a complete solution for a universal fully fault-tolerant quantum computer with repeatable error correction, and error rates low enough for real-world applications.

This is where the magic happens

The first paper describes how scientists at Quantinuum used our System Model H1-1 to perfect magic state production, a crucial technique for achieving a fully fault-tolerant universal gate set. In doing so, they set a record magic state infidelity (7x10-5), 10x better than any previously published result.

Our simulations show that our system could reach a magic state infidelity of 10^-10, or about one error per 10 billion operations, on a larger-scale computer with our current physical error rate. We anticipate reaching 10^-14, or about one error per 100 trillion operations, as we continue to advance our hardware. This means that our roadmap is now derisked.

Setting a record magic state infidelity was just the beginning. The paper also presents the first break-even two-qubit non-Clifford gate, demonstrating a logical error rate below the physical one. In doing so, the team set another record for two-qubit non-Clifford gate infidelity (2x10-4, almost 10x better than our physical error rate). Putting everything together, the team ran the first circuit that used a fully fault-tolerant universal gate set, a critical moment for our industry.

Flipping the switch

In the second paper, co-authored with researchers at the University of California at Davis, we demonstrated an important technique for universal fault-tolerance called “code switching”.

Code switching describes switching between different error correcting codes. The team then used the technique to demonstrate the key ingredients for universal computation, this time using a code where we’ve previously demonstrated full error correction and the other ingredients for universality.

In the process, the team set a new record for magic states in a distance-3 error correcting code, over 10x better than the best previous attempt with error correction. Notably, this process only cost 28 qubits instead of hundreds. This completes, for the first time, the ingredient list for a universal gate setin a system that also has real-time and repeatable QEC.

To perform "code switching", one can implement a logical gate between a 2D code and a 3D code, as pictured above. This type of advanced error correcting process requires Quantinuum's reconfigurable connectivity.
Fully equipped for fault-tolerance

Innovations like those described in these two papers can reduce estimates for qubit requirements by an order of magnitude, or more, bringing powerful quantum applications within reach far sooner.

With all of the required pieces now, finally, in place, we are ‘fully’ equipped to become the first company to perform universal fully fault-tolerant computing—just in time for the arrival of Helios, our next generation system launching this year, and what is very likely to remain as the most powerful quantum computer on the market until the launch of its successor, Sol, arriving in 2027.

technical
All