Introducing LAMBEQ

A Toolkit for Quantum Natural Language Processing

November 29, 2021
The new software development toolkit for quantum natural language processing tested and benchmarked on System Model H1 technology


Telling Alexa to play “Schrodinger’s Cat” by Tears for Fears. Asking Siri for directions to a quantum-themed bar or restaurant. A smart phone autocorrecting a word in a text message.

These are everyday applications of natural language processing – NLP for short – a field of artificial intelligence that focuses on training computers to understand words and conversations with the same reasoning as humans.

NLP technologies have advanced rapidly in recent years with the help of increasingly powerful computing clusters that can run language models that examine reams of text and count how often certain words appear. These models train devices to retrieve information, annotate text, translate words from one language to another, answer questions, and perform other tasks.

The next step is to “teach” computers to infer meaning, understand nuance, and grasp the context of conversations. To do that, however, requires massive computational resources and multiple algorithms or data structures.

A United Kingdom-based quantum computing company believes the answer lies with qubits, superposition, and entanglement.

Cambridge Quantum recently released lambeq, a new open-source software development toolkit, that enables researchers to convert sentences into quantum circuits that can be run on quantum computers. It is the first toolkit developed specifically for quantum natural language processing – or QNLP - and was tested on System Model H1 technology before it was released.

The software takes the text, parses it, and then uses linguistics and mathematics to differentiate between a verb, noun, preposition, adjectives, etc., and label them to understand the relationships between words.

Cambridge Quantum researchers tested 30 sentences on the System Model H1, which was able to classify words correctly 87 percent of the time.

“We deem that a success,” said Konstantinos Meichannetzidis, a member of the CQ team. “We found that our software works well with the Honeywell technology and were able to benchmark the performance of this quantum device.”

The lambeq project also represented a first for Honeywell Quantum Solutions. It was the first QNLP problem run on the System Model H1 hardware.

“We are really excited to be a part of this work and contribute to the development of this important toolkit,” said Tony Uttley, president of Honeywell Quantum Solutions. “Applications like this help us test our system and understand how well it performs solving different problems.”

(Honeywell Quantum Solutions and Cambridge Quantum have a long-standing history of partnering together on research and other projects that benefit end-customers. The two entities announced in June they are seeking regulatory approval to combine to form a new company.)

Why QNLP?

For humans, decoding conversations to understand meaning is a complex process. We infer meaning through tone of voice, body language, context, location, and other factors. For computers, which do not rely on heuristics, decoding language is even more complex.

The only way to create some sort of “meaning-aware” NLP is to explicitly encode compositional, semantic sentence structure into language models. To do this on a classical computer, however, requires massive computational resources, which are costly, and would likely still take months to process.

Quantum computers, on the other hand, run calculations and crunch data very differently.

They harness unique properties of quantum physics, specifically superposition and entanglement, to store and process information. Because of that, these systems can examine problems with multiple states and evaluate a large space of possible answers simultaneously.

What this means in terms of natural language processing is that quantum computers are likely to go beyond counting how often certain words appear or are used together. As noted above, quantum computers can identify words, label them as a noun, verb, preposition, etc., and understand the relationship between words. (lambeq uses the Distributional Compositional Categorical – or DisCoCat – model to do this.)

This enables the computer to infer meaning, and also provides insight into how and why the computer made connections between words. The latter is important for validating data and also expanding the use of QNLP in regulated sectors such as finance, legal, and medicine where transparency is critical.

Built upon previous work

The Cambridge Quantum team has long explored how quantum computing can advance natural language processing, and has published extensively on the topic.

In December 2020, researchers released two foundational papers that demonstrated that QNLP is inherently meaning-aware and can successfully interpret questions and respond.

Earlier this year, the team performed the first NLP experiment conducted on a quantum computer by converting more than 100 sentences into quantum circuits using an IBM technology. Researchers successfully trained two NLP models to classify words in sentences.

The release of lambeq and the testing of the open-source toolkit on the Honeywell System Model H1 represents the next steps in their QNLP efforts.

“Our team has been involved in foundational work that explores how quantum computers can be used to solve some of the most intractable problems in artificial intelligence,” said Bob Coecke, Cambridge Quantum’s chief scientist.

“In various papers published over the course of the past year,” Coecke added, “We have not only provided details on how quantum computers can enhance NLP but also demonstrated that QNLP is ‘quantum native,’ meaning the compositional structure governing language is mathematically the same as that governing quantum systems. This will ultimately move the world away from the current paradigm of AI that relies on brute force techniques that are opaque and approximate.”

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
May 1, 2025
GenQAI: A New Era at the Quantum-AI Frontier

At the heart of quantum computing’s promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the Generative Quantum Eigensolver (GQE).

GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.

Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we’re not just feeding an AI more text from the internet; we’re giving it new and valuable data that can’t be obtained anywhere else.

The Search for Ground State Energy

One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule’s ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.

The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force—testing every possible state and measuring its energy—because  the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.

That’s where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.

Here's how it works:

  • We start with a batch of trial quantum circuits, which are run on our QPU.
  • Each circuit prepares a quantum state, and we measure the energy of that state with respect to the Hamiltonian for each one.
  • Those measurements are then fed back into a transformer model (the same architecture behind models like GPT-2) to improve its outputs.
  • The transformer generates a new distribution of circuits, biased toward ones that are more likely to find lower energy states.
  • We sample a new batch from the distribution, run them on the QPU, and repeat.
  • The system learns over time, narrowing in on the true ground state.

To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H₂). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.

To our knowledge, we’re the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.

The Future of Quantum Chemistry

The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems—from combinatorial optimization to materials discovery, and potentially, even drug design.

By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.

This is just the beginning. We’re already looking at applying GQE to more complex molecules—ones that can’t currently be solved with existing methods, and we’re exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.

technical
All
Blog
April 11, 2025
Quantinuum’s partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.  

Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.  

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes.  Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.  

partnership
All
technical
All
Blog
April 4, 2025
Why is everyone suddenly talking about random numbers? We explain.

In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.

What is quantum randomness, and why should you care?

The term to know: quantum random number generators (QRNGs).

QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:

  • Protection of personal data
  • Secure financial transactions
  • Safeguarding of sensitive communications
  • Prevention of unauthorized access to medical records

Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.

Which industries will see the most value from quantum randomness?

The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:

  1. Financial services
  2. Information and communication technology
  3. Chemicals and advanced materials
  4. Energy and utilities
  5. Pharmaceuticals and healthcare

In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.

When will quantum randomness reach commercialization?

Quantum randomness is already being deployed commercially:

  • Early adopters use our Quantum Origin in data centers and smart devices.
  • Amid rising cybersecurity threats, demand is growing in regulated industries and critical infrastructure.

Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.

  • Last year, HSBC conducted a pilot combining Quantum Origin and post-quantum cryptography to future-proof gold tokens against “store now, decrypt-later” (SNDL) threats.
  • And, just last week, JPMorganChase made headlines by using our quantum computer for the first successful demonstration of certified randomness.

On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.

How is quantum randomness being regulated?

The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.

  • NIST’s SP 800-90B framework assesses the quality of random number generators.
  • The framework is part of the FIPS 140 standard, which governs cryptographic systems operations.
  • Organizations must comply with FIPS 140 for their cryptographic products to be used in regulated environments.

This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.

What does NIST validation mean for our customers?

This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.

  • Unlike hardware QRNGs, Quantum Origin requires no network connectivity, making it ideal for air-gapped systems.
  • For federal agencies, it complements our "U.S. Made" designation, easing deployment in critical infrastructure.
  • It adds further value for customers building hardware security modules, firewalls, PKIs, and IoT devices.

The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.  

--

It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.

Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.

technical
All