Quantinuum Customer JPMorgan Chase Advances Constrained Quantum Optimization with New 20-Qubit System

December 1, 2022

Quantinuum H1-1 returns promising results on large-scale extractive summarization experiment

Among other research, the Global Technology Applied Research (GTAR) Center at JPMorgan Chase is experimenting with quantum algorithms for constrained optimization to perform Natural Language Processing (NLP) for document summarization, addressing various application points across the firm. 

Marco Pistoia, Ph.D., Managing Director, Distinguished Engineer, and Head of GT Applied Research recently led the research effort around a constrained version of the Quantum Approximate Optimization Algorithm (QAOA) that can extract and summarize the most important information from legal documents and contracts. This work was recently published in Nature Scientific Reports (Constrained Quantum Optimization for Extractive Summarization on a Trapped-ion Quantum Computer) and deemed the “largest demonstration to date of constrained optimization on a gate-based quantum computer.” 

JPMorgan Chase was one of the early-access users of the Quantinuum H1-1 system when it was upgraded from 12 qubits with 3 parallel gating zones to 20 qubits with 5 parallel gating zones. The research team at JPMorgan Chase found the 20-qubit machine returned significantly better results than random guess without any error mitigation, despite the circuit depth exceeding 100 two-qubit gates. The circuits used were deeper than any quantum optimization circuits previously executed for any problem. “With 20 qubits, we could summarize bigger documents and the results were excellent,” Pistoia said. “We saw a difference, both in terms of the number of qubits and the quality of qubits.”

JPMorgan Chase has been working with Quantinuum’s quantum hardware since 2020 (pre-merger) and Pistoia has seen the evolution of the machine over time, as companies raced to add qubits. “It was clear early on that the number of qubits doesn't matter,” he said. “In the short term, we need computers whose qubits are reliable and give us the results that we expect based on the reference values.”  

Jenni Strabley, Sr., Director of Offering Management for Quantinuum, stated, “Quality counts when it comes to quantum computers. We know our users, like JPMC, expect that every time they use our H-series quantum computers, they get the same, repeatable, high-quality performance. Quality isn’t typically part of the day-to-day conversation around quantum computers, but it needs to be for users like Marco and his team to progress in their research.”

More broadly, the researchers claimed that “this demonstration is a testament to the overall progress of quantum computing hardware. Our successful execution of complex circuits for constrained optimization depended heavily on all-to-all connectivity, as the circuit depth would have significantly increased if the circuit had to be compiled to a nearest-neighbor architecture.”

Describing the experiment 

The objective of the experiment was to produce a condensed text summary by selecting sentences verbatim from the original text. The specific goal was to maximize the centrality and minimize the redundancy of the sentences in the summary and do so with a limited number of sentences. 

The JPMorgan Chase researchers used all 20 qubits of the H1-1 and executed circuits with two-qubit gate depths of up to 159 and two-qubit gate counts of up to 765. The team used IBM’s Qiskit for circuit manipulation and noiseless simulation. For the hardware experiments, they used Quantinuum’s TKET to optimize the circuits for H1-1’s native gate set. They also ran the quantum circuits in an emulator of the H1-1 device.

The JPMorgan Chase research team tested three algorithms: L-VQE, QAOA and XY-QAOA. L-VQE was easy to execute on the hardware but difficult to find good parameters for. Regarding the other two algorithms, it was easier to find good parameters, but the circuits were more expensive to execute. The XY-QAOA algorithm provided the best results. 

Looking ahead and across industries

Dr. Pistoia mentions that constrained optimization problems, such as extractive summarization, are ubiquitous in banks, thus finding high-quality solutions to constrained optimization problems can positively impact customers of all lines of business. It is also important to note that the optimization algorithm built for this experiment can also be used across other industries (e.g., transportation) because the underlying algorithm is the same in many cases.  

Even with the quality of the results from this extractive summarization work, the NLP algorithm is not ready to roll out just yet. “Quantum computers are not yet that powerful, but we're getting closer,” Pistoia said.  “These results demonstrate how algorithm and hardware progress is bringing the prospect of quantum advantage closer, which can be leveraged across many industries.”

arrow
Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.