Quantinuum part of a new alliance aimed at increasing interoperability

December 10, 2021

Quantinuum part of a new alliance aimed at increasing interoperability

Collaboration is at the core of any important technological development. From the steam engine to the internet, humanity’s innovations interweave themselves between seemingly disparate communities. 

That said, new technologies don’t always work together. There are many who still remember how Mac floppy disks were incompatible with PC machines, and vice versa. 

Quantum computing is no different, which is why Quantinuum is a founding member of the new Quantum Intermediate Representation (QIR) Alliance announced today by the Linux Foundation.  The QIR alliance is working hard to ensure this technology reaches its full potential.

The siloed nature of early quantum computing developments has protected vital intellectual property, but it has also created a separation of resources.  Quantum software from one organization may not work on the hardware of another, which can be an enormous obstacle for researchers. 

The QIR Alliance is solving this problem by establishing an intermediate representation to enable interoperability within the quantum ecosystem. Based on the open source LLVM intermediate language, the QIR Alliance will create a standard set of rules for representing quantum constructs consistent with LLVM data model. 

In doing so, the QIR Alliance hopes to enable wider collaboration and a quantum community built around principals of interoperability. 

How does intermediate representation (IR) work? 

Although programming languages may look like machine speak to the untrained eye, these languages are for  the human programmers. Intermediate representation approach splits the compilation process into two parts. A user language compiler converts human-readable program representation into IR. A hardware-specific compiler takes the IR and converts it into a set of machine-level instructions that the computer can understand. 

This approach allows a hardware-specific compiler to work with many different source languages and still give the machine adequate instructions that it can comprehend. Conversely, quantum programming language developers only need to compile their new languages to one IR representation to run on many different machines. This enables innovation on both sides of the ecosystem while avoiding duplication of effort.

Therefore, a compiler-level solution makes sense to achieve the collaborative goals the QIR Alliance has set out. 

LLVM is a collection of compiler and toolchain technologies that are designed around a language-independent intermediate representation. This common platform allows many source languages to share optimizers and executable generators, which enables a large amount of re-use in compiler machinery. 

In short, this should allow quantum hardware to work with more varieties of software than they previously could. Rather than having to rewrite software based on the specific machine researchers want to use, the QIR Alliance will allow much more collaboration from previously disparate organizations. 

An additional interesting part of LLVM is that it also facilitates integration with many languages and tools built for classical computation environments. While quantum and classical computers may seem like competing technologies, many researchers expect to see quantum and classical computing resources working together in the future. The use of LLVM will facilitate quantum and classical computations interaction at the hardware level. 

What’s the benefit? 

For an organization like Quantinuum, the QIR Alliance offers several enticing advantages. 

To begin, this initiative will benefit the current quantum ecosystem. As the reality of quantum machines begins to truly materialize, it is no longer feasible for researchers to work with systems that are not interoperable. Much like how Mac floppy disks were once not compatible with PC machines, the quantum industry will need to come together to create a valuable product for the consumer. 

On top of this, the quantum sector must be constantly looking to the future and how this technology could improve and change in the coming years. All the major players within the quantum ecosystem must adopt a forward-thinking approach to intermediate representation that will fulfill the needs of current machines while also staying mindful of yet-to-be-developed hardware. 

Keeping an eye on the horizon is a goal of the QIR Alliance, and Quantinuum is fortunate to be a part of such an important step in quantum computing’s history.