In a series of recent technical papers, Quantinuum researchers demonstrated the world-leading capabilities of the latest H-Series quantum computers, and the features and tools that make these accessible to our global customers and users.
Our teams used the H-Series quantum computers to directly measure and control non-abelian topological states of matter [1] for the first time, explore new ways to solve combinatorial optimization problems more efficiently [2], simulate molecular systems using logical qubits with error detection [3], probe critical states of matter [4], as well as exhaustively benchmark our very latest system [5].
Part of what makes such rapid technical and scientific progress possible is the effort our teams continually make to develop and improve workflow tools, helping our users to achieve successful results. In this blog post, we will explore the capabilities of three new tools in some detail, discuss their significance, and highlight their impact in recent quantum computing research.
“Leakage” is a quantum error process where a qubit ends up in a state outside the computational subspace and can significantly impact quantum computations. To address this issue, Quantinuum has developed a leakage detection gadget in pyTKET, a python module for interfacing with TKET, our quantum computing toolkit and optimizing compiler. This gadget, presented at the 2022 IEEE International Conference [6], acts as an error detection technique: it detects and excludes results affected by leakage, minimizing its impact on computations. It is also a valuable tool for measuring single-qubit and two-qubit spontaneous emission rates. H-Series users can access this open-source gadget through pyTKET, and an example notebook is available on the pyTKET GitHub repository.
The MCMR package, built as a pyTKET compiler pass, is designed to reduce the number of qubits required for executing many types of quantum algorithms, expanding the scope of what is possible on the current-generation H-Series quantum computers.
As an example, in a recent paper [4], Quantinuum researchers applied this tool to simulate the transverse-field Ising model and used only 20 qubits to simulate a much larger 128 site system (there is more detail below on this work). By measuring qubits early in the circuit, resetting them, and reusing them elsewhere, the package ingests a raw circuit and outputs an optimized circuit that requires fewer quantum resources. Previously, a scientific paper [7] and blog post on MCMR were published highlighting its benefits and applications. H-Series customers can download this package via the Quantinuum user portal.
To enable efficient use of Quantinuum’s 2nd generation processor, the System Model H2, Quantinuum has released the H2-1 emulator to give users greater flexibility with noise-informed state vector emulation. This emulator uses the NVIDIA's cuQuantum SDK to accelerate quantum computing simulation workflows, nearly approaching the limit of full state emulation on conventional classical hardware. The emulator is a faithful representation of the QPU it emulates. This is accomplished by not only using realistic noise models and noise parameters, but also by sharing the same software stack between the QPU and the emulator up until the job is either routed to the QPU or the classical computing processors. Most notable is that the emulator and the QPU use the same compiler allowing subtle and time-dependent errors to be appropriately represented. The H2-1 emulator was initially released as a beta product alongside the System Model H2 quantum computer at launch. It runs on a GPU backend and an upgraded global framework now offering features such as job chunking, incremental resource distribution, mid-execution job cancellation, and partial result return. Detailed information about the emulator can be found in the H2 emulator product datasheet on the Quantinuum website. H-Series customers with an H2 subscription can access the H2-1 emulator via an API or the Microsoft Azure platform.
Quantinuum's new enabling tools have already demonstrated their efficacy and value in recent quantum computing research, playing a vital role in advancing the field and achieving groundbreaking results. Let's expand on some notable recent examples.
All works presented here benefited from having access to our H-Series emulators; of these two significant demonstrations were the “Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor” [1] and “Demonstration of improved 1-layer QAOA with Instantaneous Quantum Polynomial” [2]. These demonstrations involved extensive testing, debugging, and experiment design, for which the versatility of the H2-1 emulator proved invaluable, providing initial performance benchmarks in a realistic noisy environment. Researchers relied on the emulator's results to gauge algorithmic performance and make necessary adjustments. By leveraging the emulator's capabilities, researchers were able to accelerate their progress.
The MCMR package was extensively used in benchmarking the System Model H2 quantum computer’s world-leading capabilities [5]. Two application-level benchmarks performed in this work, approximating the solution to a MaxCut combinatorics problem using the quantum approximate optimization algorithm (QAOA) and accurately simulating a quantum dynamics model using a holographic quantum dynamics (HoloQUADS) algorithm, would have been too large to encode on H2's 32 qubits without the MCMR package. Further illustrating the overall value of these tools, in the HoloQUADS benchmark, there is a "bond qubit" that is particularly susceptible to errors due to leakage. The leakage detection gadget was used on this "bond qubit" at the end of the circuit, and any shots with a detected leakage error were discarded. The leakage detection gadget was also used to obtain the rate of leakage error per single-qubit and two-qubit gates, two component-level benchmarks.
In another scientific work [4], the MCMR compilation tool proved instrumental to simulating a transverse-field Ising model on 128 sites, using 20 qubits. With the MCMR package and by leveraging a state-of-the-art classical tensor-network ansatz expressed as a quantum circuit, the Quantinuum team was able to express the highly entangled ground state of the critical Ising model. The team showed that with H1-1's 20 qubits, the properties of this state could be measured on a 128-site system with very high fidelity, enabling a quantitatively accurate extraction of some critical properties of the model.
At Quantinuum, we are entirely devoted to producing a quantum hardware, middleware and software stack that leads the world on the most important benchmarks and includes features and tools that provide breakthrough benefit to our growing base of users. In today's NISQ hardware, "benefit" usually takes the form of getting the most performance out of today’s hardware, continually pushing what is considered to be possible. In this blog we describe two examples: error detection and discard using the “leakage detection gadget” and an automated method for circuit optimization for qubit reuse. “Benefit” can also take other forms, such as productivity. Our emulator brings many benefits to our users, but one that resonates the most is productivity. Being a faithful representation of our QPU performance, the emulator is an accessible tool which users have at their disposal to develop and test new, innovative algorithms. The tools and features Quantinuum releases are driven by users’ feedback; whether you are new to H-Series or a seasoned user, please reach-out and let us know how we can help bring benefit to your research and use case.
Footnotes:
[1] Mohsin Iqbal et al., Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor (2023), arXiv:2305.03766 [quant-ph]
[2] Sebastian Leontica and David Amaro, Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits (2022), arXiv:2210.05526 [quant-ph]
[3] Kentaro Yamamoto, Samuel Duffield, Yuta Kikuchi, and David Muñoz Ramo, Demonstrating Bayesian Quantum Phase Estimation with Quantum Error Detection (2023), arXiv:2306.16608 [quant-ph]
[4] Reza Haghshenas, et al., Probing critical states of matter on a digital quantum computer (2023),
arXiv:2305.01650 [quant-ph]
[5] S. A. Moses, et al., A Race Track Trapped-Ion Quantum Processor (2023), arXiv:2305.03828 [quant-ph]
[6] K. Mayer, Mitigating qubit leakage errors in quantum circuits with gadgets and post-selection, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, (2022), pp. 809-809, doi: 10.1109/QCE53715.2022.00126.
[7] Matthew DeCross, Eli Chertkov, Megan Kohagen, and Michael Foss-Feig, Qubit-reuse compilation with mid-circuit measurement and reset (2022), arXiv:2210.08039 [quant-ph]
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.