

Today, the Quantinuum software team is excited to announce Guppy, a new quantum programming language for the next generation of quantum computing—designed to work with upcoming hardware like Helios, our most powerful system yet. You can download Guppy today and start experimenting with it using our custom-built Selene emulator. Both Guppy and Selene are open source and are capable of handling everything from traditional circuits to dynamic, measurement-dependent programs such as quantum error correction protocols.
Guppy is a quantum-first programming language designed from the ground up to meet the needs of state-of-the-art quantum computers. Embedded in Python, it uses syntax that closely resembles Python, making it instantly familiar to developers. Guppy also provides powerful abstractions and compile-time safety that go far beyond traditional circuit builders like pytket or Qiskit.
Guppy is designed to be readable and expressive, while enabling precise, low-level quantum programming.
This example implements the gate V3 = (I + 2iZ)/√5 using a probabilistic repeat-until-success scheme[1].

If both X-basis measurements on the top two qubits return 0, the V3 gate is successfully applied to the input state |ψ⟩; otherwise, the identity is applied. Since this succeeds with a probability of 5/8, we can repeat the procedure until success.
Let’s implement this in Guppy.
First, we’ll define a helper function to prepare a scratch qubit in the |+⟩ state:
@guppy
def plus_q() -> qubit:
"""Allocate and prepare a qubit in the |+> state"""
q = qubit()
h(q)
return qNext, a function for performing X-basis measurement:
@guppy
def x_measure(q: qubit @ owned) -> bool:
"""Measure the qubit in the X basis and return the result."""
h(q)
return measure(q)The @owned annotation tells the Guppy compiler that we’re taking ownership of the qubit, not just borrowing it—a concept familiar to Rust programmers. This is required because measurement deallocates the qubit, and the compiler uses this information to track lifetimes and prevent memory leaks.
The @guppy decorator marks functions as Guppy source code. Oustide these functions, we can use regular Python - like setting a maximum attempt limit:
MAX_ATTEMPTS = 1000With these pieces in place, we can now implement the full protocol:
@guppy
def v3_rus(q: qubit) -> int:
attempt = 0
while attempt < comptime(MAX_ATTEMPTS):
attempt += 1
a, b = plus_q(), plus_q()
toffoli(a, b, q)
s(q)
toffoli(a, b, q)
a_x, b_x = x_measure(a), x_measure(b)
if not (a_x or b_x):
break
z(q)
return attemptWhat’s happening here?

There's a lot more to Guppy, including:
Explore more in the Guppy documentation
Helios represents a major leap forward for Quantinuum hardware—with more qubits, lower error rates, and advanced runtime features that require a new class of programming tools. Guppy provides the expressive power needed to fully harness Helios's capabilities—features that traditional circuit-building tools simply can't support.
See our latest roadmap update for more on Helios and what's coming.
Quantum hardware access is limited—but development shouldn't be. Selene is our new open-source emulator, designed to run compiled Guppy programs accurately—including support for noise modeling. Unlike generic simulators, Selene models advanced runtime behavior unique to Helios, such as measurement-dependent control flow and hybrid quantum-classical logic.
Selene supports multiple simulation backends:
Whether you're prototyping new algorithms or testing low-level error correction, Selene offers a realistic, flexible environment to build and iterate.
Guppy is available now on GitHub and PyPi under the Apache 2 license. Try it out with Selene, read the docs, and start building for the future of quantum computing today.
👉 Getting started with Guppy and Selene
1. Paetznick, A., & Svore, K. M. (2014). Repeat-Until-Success: Non-deterministic decomposition of single-qubit unitaries. arXiv preprint arXiv:1311.1074 ↩
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Quantinuum is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating Quantinuum’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the NVIDIA Grace Blackwell platform, targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt NVIDIA NVQLink, an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Quantinuum Guppy and the NVIDIA CUDA-Q platform, Quantinuum has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full Quantinuum technology stack. Quantinuum’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, NVIDIA CUDA-QX, and Quantinuum’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the NVIDIA Accelerated Quantum Computing Research Center (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with Quantinuum’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by Quantinuum, NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, Quantinuum's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between Quantinuum and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous surface code, are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from Quantinuum QEC researchers introduced genon codes. The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for Quantinuum's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our new paper. We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.
Every year, the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) brings together the global supercomputing community to explore the technologies driving the future of computing.
Join Quantinuum at this year’s conference, taking place November 16th – 21st in St. Louis, Missouri, where we will showcase how our quantum hardware, software, and partnerships are helping define the next era of high-performance and quantum computing.
The Quantinuum team will be on-site at booth #4432 to showcase how we’re building the bridge between HPC and quantum.
On Tuesday and Wednesday, our quantum computing experts will host daily tutorials at our booth on Helios, our next-generation hardware platform, Nexus, our all-in-one quantum computing platform, and Hybrid Workflows, featuring the integration of NVIDIA CUDA-Q with Quantinuum Systems.
Join our team as they share insights on the opportunities and challenges of quantum integration within the HPC ecosystem:
Panel Session: The Quantum Era of HPC: Roadmaps, Challenges and Opportunities in Navigating the Integration Frontier
November 19th | 10:30 – 12:00pm CST
During this panel session, Kentaro Yamamoto from Quantinuum, will join experts from Lawrence Berkeley National Laboratory, IBM, QuEra, RIKEN, and Pawsey Supercomputing Research Centre to explore how quantum and classical systems are being brought together to accelerate scientific discovery and industrial innovation.
BoF Session: Bridging the Gap: Making Quantum-Classical Hybridization Work in HPC
November 19th | 5:15 – 6:45pm CST
Quantum-classical hybrid computing is moving from theory to reality, yet no clear roadmap exists for how best to integrate quantum processing units (QPUs) into established HPC environments. In this Birds of a Feather discussion, co-led by Quantinuum’s Grahame Vittorini and representatives from BCS, DOE, EPCC, Inria, ORNL NVIDIA, and RIKEN we hope to bring together a global community of HPC practitioners, system architects, quantum computing specialists and workflow researchers, including participants in the Workflow Community Initiative, to assess the state of hybrid integration and identify practical steps toward scalable, impactful deployment.