Protecting Expressive Circuits with a Quantum Error Detection Code

Quantinuum has optimized the “iceberg” error detection code, opening the door to early fault-tolerant quantum computing

January 8, 2024

Detecting and correcting errors has become a critical area of development in quantum computing, a key that will unlock results which put quantum computers in a different league from their classical counterparts. 

Researchers are working on ways to handle errors so that the hardware we will have in the coming months will be capable of performing useful tasks that are intractable for any classical computer — in other words, to achieve “quantum advantage”. 

The full monty, known as “large-scale fault-tolerant quantum error correction” remains an open challenge in the quantum computing landscape, placing incredibly demanding constraints on the hardware. A promising start is to implement error detection instead of full error correction. In this approach, the system regularly checks for errors, and if one is detected, throws out the computation and restarts. 

The team at Quantinuum realized that just such a code, nicknamed the “iceberg code”, if optimized to take advantage of the industry-leading components in Quantinuum’s trapped-ion quantum computers, could offer real potential for early fault-tolerance. Quantinuum’s H-Series hardware boasts mobile qubits, mid circuit measurement and the ability to program circuits with arbitrary-angle gates – making it ripe for new algorithm implementation and development. The team’s results, published today in Nature Physics Protecting expressive circuits with a quantum error detection code, detail a code that’s so efficient it was able to protect much deeper and more expressive circuits than had previously been realized with quantum error correction, and it did so making extremely efficient use of the very high-fidelity qubits and gates available in Quantinuum’s quantum charge-coupled device (QCCD) architecture. 

“Our work sets the bar for what more advanced fully fault-tolerant codes need to beat on hardware,” said David Amaro, an author on the paper.

A key advantage of the iceberg code is how efficiently it squeezes out the maximum number of logical qubits from the given set of physical qubits – it can make k logical qubits out of only k+2 physical qubits. Every logical gate is implemented by a unique two-qubit physical gate, making it a very fast, clean, and expressive implementation. In addition to this, it needs only 2 more ancilla qubits for syndrome measurement, making for a very small overhead of only 4 physical qubits. Using the original 12-qubit configuration of Quantinuum’s H1-2 computer (since increased to 20), this meant the team could realize 8 logical qubits.

With these 8 logical qubits, the team implemented much deeper and more expressive circuits than had previously been demonstrated with quantum error correction codes. 

The team’s work is the first experimental demonstration that sophisticated quantum error detection techniques are useful to successfully protect very expressive circuits on a real quantum computer. In contrast, previous demonstrations of fully fault-tolerant codes on hardware showed protection only of basic logical gates or “primitives” (the building blocks of full algorithms). 

The Iceberg code is a method that’s useful today for practitioners, and can be used to protect near-term algorithms like the ‘quantum approximate optimization algorithm’, or the ‘variational quantum eigensolver’, algorithms currently put to work in domains including chemical simulation, quantum machine learning and financial optimization. In fact, it was used by a team at Quantinuum to protect the quantum phase estimation algorithm, a critical piece for many other quantum algorithms, and deployed in a state-of-the-art simulation of a real-world hydrogen molecule using logically-encoded qubits — a feat not possible using any other quantum computing hardware yet developed.

Looking forwards, the team plans to push the code as far as possible to determine if it is sufficient to protect quantum circuits capable of a quantum advantage. This will require setting a “minimal” quantum advantage experiment, working on careful engineering and benchmarking of every aspect of the code, and the use of Quantinuum’s best-in-class high fidelity gates. In parallel, they will also be working to understand if and how the Iceberg code can contribute to minimize the resource overhead of some of the most promising fully fault-tolerant codes.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!

If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.

The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.

Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.

Why this matters: Quantum AI, born native

This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.

Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.  

Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.

That’s what we’ve built.

What makes Quixer different?

Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.

Quixer is different: it’s not a translation – it's an innovation.

With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.

As quantum computing advances toward fault tolerance, Quixer is built to scale with it.

What’s next for Quixer?

We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.

This is just the beginning.

Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.

This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.

Stay tuned. The revolution is only getting started.

technical
All
Blog
June 9, 2025
Join us at ISC25

Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!

As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.

Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.

  • Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2²³ = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
  • Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by Jülich Research Centre.
  • We’ve laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
  • We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall

From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.

Presentations & Demos

Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.

Multicore World Networking Event

  • Monday, June 9 | 7:00pm – 9:00 PM at Hofbräu Wirtshaus Esplanade
    In partnership with Multicore World, join us for a Quantinuum-sponsored Happy Hour to explore the present and future of quantum computing with Quantinuum CCO, Dr. Nash Palaniswamy, and network with our team.
    Register here

H1 x CUDA-Q Demonstration

  • All Week at Booth B40
    We’re showcasing a live demonstration of NVIDIA’s CUDA-Q platform running on Quantinuum’s industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry.
    Register for a demo

HPC Solutions Forum

  • Wednesday, June 11 | 2:20 – 2:40 PM
    “Enabling Scientific Discovery with Generative Quantum AI” – Presented by Maud Einhorn, Technical Account Executive at Quantinuum, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!

Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.

We look forward to seeing you in Hamburg!

events
All
Blog
May 27, 2025
Teleporting to new heights

Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.

Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.

Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.

Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the Quantinuum's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.

This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.

Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.

This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.

technical
All