Quantinuum researchers have set a record for the number of times they were able to place qubits into a quantum state and then measure the results, beating the previously stated best in class many times over.
The team led by Alex An, Tony Ransford, Andrew Schaffer, Lucas Sletten, John Gaebler, James Hostetter, and Grahame Vittorini achieved a state preparation and measurement, or SPAM, fidelity of 99.9904 percent — the highest of any quantum technology to date — using qubits formed from non-radioactive barium-137. The results, which are detailed here, have been submitted to arXiv.
This work has major implications for the quantum industry and trapped-ion technologies.
Improving SPAM fidelity helps reduce errors that accumulate in today’s “noisy” quantum machines, which is critical for moving to “fault-tolerant” systems that prevent errors from cascading through a system and corrupting circuits.
In addition, being able to form qubits from barium-137 and place them into a quantum state with high fidelity is advantageous for scaling trapped-ion hardware systems. Researchers can use lasers in the visible spectrum, a more mature and readily available technology, to initialize and manipulate qubits.
“This is a major step forward for the Quantinuum team and our high-performing trapped-ion quantum hardware,” said Tony Uttley, Quantinuum president and chief operating officer. “The advancement of the quantum computing industry as a whole is going to come from lots of individual technological achievements like this one, paving the way for future fault-tolerant systems.”
For most people, the word “spam” conjures images of unwanted emails flooding an inbox or of chopped pork in a can.
In quantum computing, SPAM stands for state preparation and measurement - two of the five conditions identified by theoretical physicist David DiVincenzo as necessary for the operation of quantum computer. It refers to initializing qubits (placing them in a quantum state) and then measuring the output. SPAM is measured in terms of fidelity, or the ability to complete these tasks at a high rate of success. The higher the fidelity the better because it means a quantum computer is performing these critical tasks with fewer errors.
Researchers at Quantinuum believe SPAM fidelity will need to hit 99.97 to 99.99 percent to reach the point at which the logical error rate beats the leading order physical error rate.
Neutral ytterbium atoms have long been a source of ions in trapped-ion quantum computers. Charged by lasers, ytterbium ions are transformed into qubits. But using ytterbium presents challenges. Expensive ultraviolet lasers are needed to manipulate ytterbium ions and the results can be difficult to measure.
Barium ions, however, are easier to measure and can be manipulated with less expensive and more stable lasers in the green range. But until this work with non-radioactive barium-137, researchers have only been able to achieve low SPAM errors with barium-133 atoms, which are radioactive and require special handling.
“Nobody thought you could do quick, robust SPAM with non-radioactive barium-137,” said Dr. Anthony Ransford, a Quantinuum physicist and technical lead. “We were able to devise a scheme that enabled us to initialize the qubits and measure them better than any other qubits. We are the first to do it.”
Being able to initialize non-radioactive barium-137 ions is just the first step. The goal is to incorporate these ions into future Quantinuum hardware technologies.
“We believe using non-radioactive barium-137 ions as qubits is an attractive path to increasingly robust, scalable, quantum hardware,” Uttley said.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.
Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.
That’s what we’ve built.
Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it’s not a translation – it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
H1 x CUDA-Q Demonstration
HPC Solutions Forum
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
We look forward to seeing you in Hamburg!
Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.