The first half of 2024 will go down as the period when we shed the last vestiges of the “wait and see” culture that has dominated the quantum computing industry. Thanks to a run of recent achievements, we have helped to lead the entire quantum computing industry into a new, post-classical era.
Today we are announcing the latest of these achievements: a major qubit count enhancement to our flagship System Model H2 quantum computer from 32 to 56 qubits. We also reveal meaningful results of work with our partner JPMorgan Chase & Co. that showcases a significant lift in performance.
But to understand the full importance of today’s announcements, it is worth recapping the succession of breakthroughs that confirm that we are entering a new era of quantum computing in which classical simulation will be infeasible.
Between January and June 2024, Quantinuum’s pioneering teams published a succession of results that accelerate our path to universal fault-tolerant quantum computing.
Our technical teams first presented a long-sought solution to the “wiring problem”, an engineering challenge that affects all types of quantum computers. In short, most current designs will require an impossible number of wires connected to the quantum processor to scale to large qubit numbers. Our solution allows us to scale to high qubit numbers with no issues, proving that our QCCD architecture has the potential to scale.
Next, we became the first quantum computing company in the world to hit “three 9s” two qubit gate fidelity across all qubit pairs in a production device. This level of fidelity in 2-qubit gate operations was long thought to herald the point at which error corrected quantum computing could become a reality. It has accelerated and intensified our focus on quantum error correction (QEC). Our scientists and engineers are working with our customers and partners to achieve multiple breakthroughs in QEC in the coming months, many of which will be incorporated into products such as the H-Series and our chemistry simulation platform, InQuanto™.
Following that, with our long-time partner Microsoft, we hit an error correction performance threshold that many believed was still years away. The System Model H2 became the first – and only – quantum computer in the world capable of creating and computing with highly reliable logical (error corrected) qubits. In this demonstration, the H2-1 configured with 32 physical qubits supported the creation of four highly reliable logical qubits operating at “better than break-even”. In the same demonstration, we also shared that logical circuit error rates were shown to be up to 800x lower than the corresponding physical circuit error rates. No other quantum computing company is even close to matching this achievement (despite many feverish claims in the past 12 months).
The quantum computing industry is departing the era when quantum computers could be simulated by a classical computer. Today, we are making two milestone announcements. The first is that our H2-1 processor has been upgraded to 56 trapped-ion qubits, making it impossible to classically simulate, without any loss of the market-leading fidelity, all-to-all qubit connectivity, mid-circuit measurement, qubit reuse, and feed forward.
The second is that the upgrade of H2-1 from 32 to 56 qubits makes our processor capable of challenging the world’s most powerful supercomputers. This demonstration was achieved in partnership with our long-term collaborator JPMorgan Chase & Co. and researchers from Caltech and Argonne National Lab.
Our collaboration tackled a well-known algorithm, Random Circuit Sampling (RCS), and measured the quality of our results with a suite of tests including the linear cross entropy benchmark (XEB) – an approach first made famous by Google in 2019 in a bid to demonstrate “quantum supremacy”. An XEB score close to 0 says your results are noisy – and do not utilize the full potential of quantum computing. In contrast, the closer an XEB score is to 1, the more your results demonstrate the power of quantum computing. The results on H2-1 are excellent, revealing, and worth exploring in a little detail. Here is the complete data on GitHub.
Our results show how far quantum hardware has come since Google’s initial demonstration. They originally ran circuits on 53 superconducting qubits that were deep enough to severely frustrate high-fidelity classical simulation at the time, achieving an estimated XEB score of ~0.002. While they showed that this small value was statistically inconsistent with zero, improvements in classical algorithms and hardware have steadily increased what XEB scores are achievable by classical computers, to the point that classical computers can now achieve scores similar to Google’s on their original circuits.
In contrast, we have been able to run circuits on all 56 qubits in H2-1 that are deep enough to challenge high-fidelity classical simulation while achieving an estimated XEB score of ~0.35. This >100x improvement implies the following: even for circuits large and complex enough to frustrate all known classical simulation methods, the H2 quantum computer produces results without making even a single error about 35% of the time. In contrast to past announcements associated with XEB experiments, 35% is a significant step towards the idealized 100% fidelity limit in which the computational advantage of quantum computers is clearly in sight.
This huge jump in quality is made possible by Quantinuum’s market-leading high fidelity and also our unique all-to-all connectivity. Our flexible connectivity, enabled by our QCCD architecture, enables us to implement circuits with much more complex geometries than the 2D geometries supported by superconducting-based quantum computers. This specific advantage means our quantum circuits become difficult to simulate classically with significantly fewer operations (or gates). These capabilities have an enormous impact on how our computational power scales as we add more qubits: since noisy quantum computers can only run a limited number of gates before returning unusable results, needing to run fewer gates ultimately translates into solving complex tasks with consistent and dependable accuracy.
This is a vitally important moment for companies and governments watching this space and deciding when to invest in quantum: these results underscore both the performance capabilities and the rapid rate of improvement of our processors, especially the System Model H2, as a prime candidate for achieving near-term value.
A direct comparison can be made between the time it took H2-1 to perform RCS and the time it took a classical supercomputer. However, classical simulations of RCS can be made faster by building a larger supercomputer (or by distributing the workload across many existing supercomputers). A more robust comparison is to consider the amount of energy that must be expended to perform RCS on either H2-1 or on classical computing hardware, which ultimately controls the real cost of performing RCS. An analysis based on the most efficient known classical algorithm for RCS and the power consumption of leading supercomputers indicates that H2-1 can perform RCS at 56 qubits with an estimated 30,000x reduction in power consumption. These early results should be seen as very attractive for data center owners and supercomputing facilities looking to add quantum computers as “accelerators” for their users.
Today’s milestone announcements are clear evidence that the H2-1 quantum processor can perform computational tasks with far greater efficiency than classical computers. They underpin the expectation that as our quantum computers scale beyond today’s 56 qubits to hundreds, thousands, and eventually millions of high-quality qubits, classical supercomputers will quickly fall behind. Quantinuum’s quantum computers are likely to become the device of choice as scrutiny continues to grow of the power consumption of classical computers applied to highly intensive workloads such as simulating molecules and material structures – tasks that are widely expected to be amenable to a speedup using quantum computers.
With this upgrade in our qubit count to 56, we will no longer be offering a commercial “fully encompassing” emulator – a mathematically exact simulation of our H2-1 quantum processor is now impossible, as it would take up the entire memory of the world’s best supercomputers. With 56 qubits, the only way to get exact results is to run on the actual hardware, a trend the leaders in this field have already embraced.
More generally, this work demonstrates that connectivity, fidelity, and speed are all interconnected when measuring the power of a quantum computer. Our competitive edge will persist in the long run; as we move to running more algorithms at the logical level, connectivity and fidelity will continue to play a crucial role in performance.
“We are entirely focused on the path to universal fault tolerant quantum computers. This objective has not changed, but what has changed in the past few months is clear evidence of the advances that have been made possible due to the work and the investment that has been made over many, many years. These results show that whilst the full benefits of fault tolerant quantum computers have not changed in nature, they may be reachable earlier than was originally expected, and crucially, that along the way, there will be tangible benefits to our customers in their day-to-day operations as quantum computers start to perform in ways that are not classically simulatable. We have an exciting few months ahead of us as we unveil some of the applications that will start to matter in this context with our partners across a number of sectors.”
– Ilyas Khan, Chief Product Officer
Stay tuned for results in error correction, physics, chemistry and more on our new 56-qubit processor.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
Our quantum algorithms team has been hard at work exploring solutions to continually optimize our system’s performance. Recently, they’ve invented a novel technique, called the Quantum Paldus Transform (QPT), that can offer significant resource savings in future applications.
The transform takes complex representations and makes them simple, by transforming into a different “basis”. This is like looking at a cube from one angle, then rotating it and seeing just a square, instead. Transformations like this save resources because the more complex your problem looks, the more expensive it is to represent and manipulate on qubits.
While it might sound like magic, transforms are a commonly used tool in science and engineering. Transforms simplify problems by reshaping them into something that is easier to deal with, or that provides a new perspective on the situation. For example, sound engineers use Fourier transforms every day to look at complex musical pieces in terms of their frequency components. Electrical engineers use Laplace transforms; people who work in image processing use the Abel transform; physicists use the Legendre transform, and so on.
In a new paper outlining the necessary tools to implement the QPT, Dr. Nathan Fitzpatrick and Mr. Jędrzej Burkat explain how the QPT will be widely applicable in quantum computing simulations, spanning areas like molecular chemistry, materials science, and semiconductor physics. The paper also describes how the algorithm can lead to significant resource savings by offering quantum programmers a more efficient way of representing problems on qubits.
The efficiency of the QPT stems from its use of one of the most profound findings in the field of physics: that symmetries drive the properties of a system.
While the average person can “appreciate” symmetry, for example in design or aesthetics, physicists understand symmetry as a much more profound element present in the fabric of reality. Symmetries are like the universe’s DNA; they lead to conservation laws, which are the most immutable truths we know.
Back in the 1920’s, when women were largely prohibited from practicing physics, one of the great mathematicians of the century, Emmy Noether, turned her attention to the field when she was tasked with helping Einstein with his work. In her attempt to solve a problem Einstein had encountered, Dr. Noether realized that all the most powerful and fundamental laws of physics, such as “energy can neither be created nor destroyed” are in fact the consequence of a deep simplicity – symmetry – hiding behind the curtains of reality. Dr. Noether’s theorem would have a profound effect on the trajectory of physics.
In addition to the many direct consequences of Noether’s theorem is a longstanding tradition amongst physicists to treat symmetry thoughtfully. Because of its role in the fabric of our universe, carefully considering the symmetries of a system often leads to invaluable insights.
Many of the systems we are interested in simulating with quantum computers are, at their heart, systems of electrons. Whether we are looking at how electrons move in a paired dance inside superconductors, or how they form orbitals and bonds in a chemical system, the motion of electrons are at the core.
Seven years after Noether published her blockbuster results, Wolfgang Pauli made waves when he published the work describing his Pauli exclusion principle, which relies heavily on symmetry to explain basic tenets of quantum theory. Pauli’s principle has enormous consequences; for starters, describing how the objects we interact with every day are solid even though atoms are mostly empty space, and outlining the rules of bonds, orbitals, and all of chemistry, among other things.
It is Pauli's symmetry, coupled with a deep respect for the impact of symmetry, that led our team at Quantinuum to the discovery published today.
In their work, they considered the act of designing quantum algorithms, and how one’s design choices may lead to efficiency or inefficiency.
When you design quantum algorithms, there are many choices you can make that affect the final result. Extensive work goes into optimizing each individual step in an algorithm, requiring a cyclical process of determining subroutine improvements, and finally, bringing it all together. The significant cost and time required is a limiting factor in optimizing many algorithms of interest.
This is again where symmetry comes into play. The authors realized that by better exploiting the deepest symmetries of the problem, they could make the entire edifice more efficient, from state preparation to readout. Over the course of a few years, a team lead Dr. Fitzpatrick and his colleague Jędrzej Burkat slowly polished their approach into a full algorithm for performing the QPT.
The QPT functions by using Pauli’s symmetry to discard unimportant details and strip the problem down to its bare essentials. Starting with a Paldus transform allows the algorithm designer to enjoy knock-on effects throughout the entire structure, making it overall more efficient to run.
“It’s amazing to think how something we discovered one hundred years ago is making quantum computing easier and more efficient,” said Dr. Nathan Fitzpatrick.
Ultimately, this innovation will lead to more efficient quantum simulation. Projects we believed to still be many years out can now be realized in the near term.
The discovery of the Quantum Paldus Transform is a powerful reminder that enduring ideas—like symmetry—continue to shape the frontiers of science. By reaching back into the fundamental principles laid down by pioneers like Noether and Pauli, and combining them with modern quantum algorithm design, Dr. Fitzpatrick and Mr. Burkat have uncovered a tool with the potential to reshape how we approach quantum computation.
As quantum technologies continue their crossover from theoretical promise to practical implementation, innovations like this will be key in unlocking their full potential.
In a new paper in Nature Physics, we've made a major breakthrough in one of quantum computing’s most elusive promises: simulating the physics of superconductors. A deeper understanding of superconductivity would have an enormous impact: greater insight could pave the way to real-world advances, like phone batteries that last for months, “lossless” power grids that drastically reduce your bills, or MRI machines that are widely available and cheap to use. The development of room-temperature superconductors would transform the global economy.
A key promise of quantum computing is that it has a natural advantage when studying inherently quantum systems, like superconductors. In many ways, it is precisely the deeply ‘quantum’ nature of superconductivity that makes it both so transformative and so notoriously difficult to study.
Now, we are pleased to report that we just got a lot closer to that ultimate dream.
To study something like a superconductor with a quantum computer, you need to first “encode” the elements of the system you want to study onto the qubits – in other words, you want to translate the essential features of your material onto the states and gates you will run on the computer.
For superconductors in particular, you want to encode the behavior of particles known as “fermions” (like the familiar electron). Naively simulating fermions using qubits will result in garbage data, because qubits alone lack the key properties that make a fermion so unique.
Until recently, scientists used something called the “Jordan-Wigner” encoding to properly map fermions onto qubits. People have argued that the Jordan-Wigner encoding is one of the main reasons fermionic simulations have not progressed beyond simple one-dimensional chain geometries: it requires too many gates as the system size grows.
Even worse, the Jordan-Wigner encoding has the nasty property that it is, in a sense, maximally non-fault-tolerant: one error occurring anywhere in the system affects the whole state, which generally leads to an exponential overhead in the number of shots required. Due to this, until now, simulating relevant systems at scale – one of the big promises of quantum computing – has remained a daunting challenge.
Theorists have addressed the issues of the Jordan-Wigner encoding and have suggested alternative fermionic encodings. In practice, however, the circuits created from these alternative encodings come with large overheads and have so far not been practically useful.
We are happy to report that our team developed a new way to compile one of the new, alternative, encodings that dramatically improves both efficiency and accuracy, overcoming the limitations of older approaches. Their new compilation scheme is the most efficient yet, slashing the cost of simulating fermionic hopping by an impressive 42%. On top of that, the team also introduced new, targeted error mitigation techniques that ensure even larger systems can be simulated with far fewer computational "shots"—a critical advantage in quantum computing.
Using their innovative methods, the team was able to simulate the Fermi-Hubbard model—a cornerstone of condensed matter physics— at a previously unattainable scale. By encoding 36 fermionic modes into 48 physical qubits on System Model H2, they achieved the largest quantum simulation of this model to date.
This marks an important milestone in quantum computing: it demonstrates that large-scale simulations of complex quantum systems, like superconductors, are now within reach.
This breakthrough doesn’t just show how we can push the boundaries of what quantum computers can do; it brings one of the most exciting use cases of quantum computing much closer to reality. With this new approach, scientists can soon begin to simulate materials and systems that were once thought too complex for the most powerful classical computers alone. And in doing so, they’ve unlocked a path to potentially solving one of the most exciting and valuable problems in science and technology: understanding and harnessing the power of superconductivity.
The future of quantum computing—and with it, the future of energy, electronics, and beyond—just got a lot more exciting.
In an experiment led by Princeton and NIST, we’ve just delivered a crucial result in Quantum Error Correction (QEC), demonstrating key principles of scalable quantum computing developed by Drs Peter Shor, Dorit Aharonov, and Michael Ben-Or. In this latest paper, we showed that by using “concatenated codes” noise can be exponentially suppressed — proving that quantum computing will scale.
Quantum computing is already producing results, but high-profile applications like Shor’s algorithm—which can break RSA encryption—require error rates about a billion times lower than what today’s machines can achieve.
Achieving such low error rates is a holy grail of quantum computing. Peter Shor was the first to hypothesize a way forward, in the form of quantum error correction. Building on his results, Dorit Aharanov and Michael Ben-Or proved that by concatenating quantum error correcting codes, a sufficiently high-quality quantum computer can suppress error rates arbitrarily at the cost of a very modest increase in the required number of qubits. Without that insight, building a truly fault-tolerant quantum computer would be impossible.
Their results, now widely referred to as the “threshold theorem”, laid the foundation for realizing fault-tolerant quantum computing. At the time, many doubted that the error rates required for large-scale quantum algorithms could ever be achieved in practice. The threshold theorem made clear that large scale quantum computing is a realistic possibility, giving birth to the robust quantum industry that exists today.
Until now, nobody has realized the original vision for the threshold theorem. Last year, Google performed a beautiful demonstration of the threshold theorem in a different context (without concatenated codes). This year, we are proud to report the first experimental realization of that seminal work—demonstrating fault-tolerant quantum computing using concatenated codes, just as they envisioned.
The team demonstrated that their family of protocols achieves high error thresholds—making them easier to implement—while requiring minimal ancilla qubits, meaning lower overall qubit overhead. Remarkably, their protocols are so efficient that fault-tolerant preparation of basis states requires zero ancilla overhead, making the process maximally efficient.
This approach to error correction has the potential to significantly reduce qubit requirements across multiple areas, from state preparation to the broader QEC infrastructure. Additionally, concatenated codes offer greater design flexibility, which makes them especially attractive. Taken together, these advantages suggest that concatenation could provide a faster and more practical path to fault-tolerant quantum computing than popular approaches like the surface code.
From a broader perspective, this achievement highlights the power of collaboration between industry, academia, and national laboratories. Quantinuum’s commercial quantum systems are so stable and reliable that our partners were able to carry out this groundbreaking research remotely—over the cloud—without needing detailed knowledge of the hardware. While we very much look forward to welcoming them to our labs before long, its notable that they never need to step inside to harness the full capabilities of our machines.
As we make quantum computing more accessible, the rate of innovation will only increase. The era of plug-and-play quantum computing has arrived. Are you ready?