The first half of 2024 will go down as the period when we shed the last vestiges of the “wait and see” culture that has dominated the quantum computing industry. Thanks to a run of recent achievements, we have helped to lead the entire quantum computing industry into a new, post-classical era.
Today we are announcing the latest of these achievements: a major qubit count enhancement to our flagship System Model H2 quantum computer from 32 to 56 qubits. We also reveal meaningful results of work with our partner JPMorgan Chase & Co. that showcases a significant lift in performance.
But to understand the full importance of today’s announcements, it is worth recapping the succession of breakthroughs that confirm that we are entering a new era of quantum computing in which classical simulation will be infeasible.
Between January and June 2024, Quantinuum’s pioneering teams published a succession of results that accelerate our path to universal fault-tolerant quantum computing.
Our technical teams first presented a long-sought solution to the “wiring problem”, an engineering challenge that affects all types of quantum computers. In short, most current designs will require an impossible number of wires connected to the quantum processor to scale to large qubit numbers. Our solution allows us to scale to high qubit numbers with no issues, proving that our QCCD architecture has the potential to scale.
Next, we became the first quantum computing company in the world to hit “three 9s” two qubit gate fidelity across all qubit pairs in a production device. This level of fidelity in 2-qubit gate operations was long thought to herald the point at which error corrected quantum computing could become a reality. It has accelerated and intensified our focus on quantum error correction (QEC). Our scientists and engineers are working with our customers and partners to achieve multiple breakthroughs in QEC in the coming months, many of which will be incorporated into products such as the H-Series and our chemistry simulation platform, InQuanto™.
Following that, with our long-time partner Microsoft, we hit an error correction performance threshold that many believed was still years away. The System Model H2 became the first – and only – quantum computer in the world capable of creating and computing with highly reliable logical (error corrected) qubits. In this demonstration, the H2-1 configured with 32 physical qubits supported the creation of four highly reliable logical qubits operating at “better than break-even”. In the same demonstration, we also shared that logical circuit error rates were shown to be up to 800x lower than the corresponding physical circuit error rates. No other quantum computing company is even close to matching this achievement (despite many feverish claims in the past 12 months).
The quantum computing industry is departing the era when quantum computers could be simulated by a classical computer. Today, we are making two milestone announcements. The first is that our H2-1 processor has been upgraded to 56 trapped-ion qubits, making it impossible to classically simulate, without any loss of the market-leading fidelity, all-to-all qubit connectivity, mid-circuit measurement, qubit reuse, and feed forward.
The second is that the upgrade of H2-1 from 32 to 56 qubits makes our processor capable of challenging the world’s most powerful supercomputers. This demonstration was achieved in partnership with our long-term collaborator JPMorgan Chase & Co. and researchers from Caltech and Argonne National Lab.
Our collaboration tackled a well-known algorithm, Random Circuit Sampling (RCS), and measured the quality of our results with a suite of tests including the linear cross entropy benchmark (XEB) – an approach first made famous by Google in 2019 in a bid to demonstrate “quantum supremacy”. An XEB score close to 0 says your results are noisy – and do not utilize the full potential of quantum computing. In contrast, the closer an XEB score is to 1, the more your results demonstrate the power of quantum computing. The results on H2-1 are excellent, revealing, and worth exploring in a little detail. Here is the complete data on GitHub.
Our results show how far quantum hardware has come since Google’s initial demonstration. They originally ran circuits on 53 superconducting qubits that were deep enough to severely frustrate high-fidelity classical simulation at the time, achieving an estimated XEB score of ~0.002. While they showed that this small value was statistically inconsistent with zero, improvements in classical algorithms and hardware have steadily increased what XEB scores are achievable by classical computers, to the point that classical computers can now achieve scores similar to Google’s on their original circuits.
In contrast, we have been able to run circuits on all 56 qubits in H2-1 that are deep enough to challenge high-fidelity classical simulation while achieving an estimated XEB score of ~0.35. This >100x improvement implies the following: even for circuits large and complex enough to frustrate all known classical simulation methods, the H2 quantum computer produces results without making even a single error about 35% of the time. In contrast to past announcements associated with XEB experiments, 35% is a significant step towards the idealized 100% fidelity limit in which the computational advantage of quantum computers is clearly in sight.
This huge jump in quality is made possible by Quantinuum’s market-leading high fidelity and also our unique all-to-all connectivity. Our flexible connectivity, enabled by our QCCD architecture, enables us to implement circuits with much more complex geometries than the 2D geometries supported by superconducting-based quantum computers. This specific advantage means our quantum circuits become difficult to simulate classically with significantly fewer operations (or gates). These capabilities have an enormous impact on how our computational power scales as we add more qubits: since noisy quantum computers can only run a limited number of gates before returning unusable results, needing to run fewer gates ultimately translates into solving complex tasks with consistent and dependable accuracy.
This is a vitally important moment for companies and governments watching this space and deciding when to invest in quantum: these results underscore both the performance capabilities and the rapid rate of improvement of our processors, especially the System Model H2, as a prime candidate for achieving near-term value.
A direct comparison can be made between the time it took H2-1 to perform RCS and the time it took a classical supercomputer. However, classical simulations of RCS can be made faster by building a larger supercomputer (or by distributing the workload across many existing supercomputers). A more robust comparison is to consider the amount of energy that must be expended to perform RCS on either H2-1 or on classical computing hardware, which ultimately controls the real cost of performing RCS. An analysis based on the most efficient known classical algorithm for RCS and the power consumption of leading supercomputers indicates that H2-1 can perform RCS at 56 qubits with an estimated 30,000x reduction in power consumption. These early results should be seen as very attractive for data center owners and supercomputing facilities looking to add quantum computers as “accelerators” for their users.
Today’s milestone announcements are clear evidence that the H2-1 quantum processor can perform computational tasks with far greater efficiency than classical computers. They underpin the expectation that as our quantum computers scale beyond today’s 56 qubits to hundreds, thousands, and eventually millions of high-quality qubits, classical supercomputers will quickly fall behind. Quantinuum’s quantum computers are likely to become the device of choice as scrutiny continues to grow of the power consumption of classical computers applied to highly intensive workloads such as simulating molecules and material structures – tasks that are widely expected to be amenable to a speedup using quantum computers.
With this upgrade in our qubit count to 56, we will no longer be offering a commercial “fully encompassing” emulator – a mathematically exact simulation of our H2-1 quantum processor is now impossible, as it would take up the entire memory of the world’s best supercomputers. With 56 qubits, the only way to get exact results is to run on the actual hardware, a trend the leaders in this field have already embraced.
More generally, this work demonstrates that connectivity, fidelity, and speed are all interconnected when measuring the power of a quantum computer. Our competitive edge will persist in the long run; as we move to running more algorithms at the logical level, connectivity and fidelity will continue to play a crucial role in performance.
“We are entirely focused on the path to universal fault tolerant quantum computers. This objective has not changed, but what has changed in the past few months is clear evidence of the advances that have been made possible due to the work and the investment that has been made over many, many years. These results show that whilst the full benefits of fault tolerant quantum computers have not changed in nature, they may be reachable earlier than was originally expected, and crucially, that along the way, there will be tangible benefits to our customers in their day-to-day operations as quantum computers start to perform in ways that are not classically simulatable. We have an exciting few months ahead of us as we unveil some of the applications that will start to matter in this context with our partners across a number of sectors.”
– Ilyas Khan, Chief Product Officer
Stay tuned for results in error correction, physics, chemistry and more on our new 56-qubit processor.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
For a novel technology to be successful, it must prove that it is both useful and works as described.
Checking that our computers “work as described” is called benchmarking and verification by the experts. We are proud to be leaders in this field, with the most benchmarked quantum processors in the world. We also work with National Laboratories in various countries to develop new benchmarking techniques and standards. Additionally, we have our own team of experts leading the field in benchmarking and verification.
Currently, a lot of verification (i.e. checking that you got the right answer) is done by classical computers – most quantum processors can still be simulated by a classical computer. As we move towards quantum processors that are hard (or impossible) to simulate, this introduces a problem: how can we keep checking that our technology is working correctly without simulating it?
We recently partnered with the UK’s Quantum Software Lab to develop a novel and scalable verification and benchmarking protocol that will help us as we make the transition to quantum processors that cannot be simulated.
This new protocol does not require classical simulation, or the transfer of a qubit between two parties. The team’s “on-chip” verification protocol eliminates the need for a physically separated verifier and makes no assumptions about the processor’s noise. To top it all off, this new protocol is qubit-efficient.
The team’s protocol is application-agnostic, benefiting all users. Further, the protocol is optimized to our QCCD hardware, meaning that we have a path towards verified quantum advantage – as we compute more things that cannot be classically simulated, we will be able to check that what we are doing is right.
Running the protocol on Quantinuum System Model H1, the team ended up performing the largest verified Measurement Based Quantum Computing (MBQC) circuit to date. This was enabled by our System Model H1’s low cross-talk gate zones, mid-circuit measurement and reset, and long coherence times. By performing the largest verified MBQC computation to date, and by verifying computations significantly larger than any others to be verified before, we reaffirm the Quantinuum Systems as best-in-class.
Particle accelerators like the LHC take serious computing power. Often on the bleeding-edge of computing technology, accelerator projects sometimes even drive innovations in computing. In fact, while there is some controversy over exactly where the world wide web was created, it is often attributed to Tim Berners-Lee at CERN, who developed it to meet the demand for automated information-sharing between scientists in universities and institutes around the world.
With annual data generated by accelerators in excess of exabytes (a billion gigabytes), tens of millions of lines of code written to support the experiments, and incredibly demanding hardware requirements, it’s no surprise that the High Energy Physics community is interested in quantum computing, which offers real solutions to some of their hardest problems. Furthermore, the HEP community is well-positioned to support the early stages of technological development: with budgets in the 10s of billions per year and tens of thousands of scientists and engineers working on accelerator and computational physics, this is a ripe industry for quantum computing to tap.
As the authors of this paper stated: “[Quantum Computing] encompasses several defining characteristics that are of particular interest to experimental HEP: the potential for quantum speed-up in processing time, sensitivity to sources of correlations in data, and increased expressivity of quantum systems... Experiments running on high-luminosity accelerators need faster algorithms; identification and reconstruction algorithms need to capture correlations in signals; simulation and inference tools need to express and calculate functions that are classically intractable”
The authors go on to state: “Within the existing data reconstruction and analysis paradigm, access to algorithms that exhibit quantum speed-ups would revolutionize the simulation of large-scale quantum systems and the processing of data from complex experimental set-ups. This would enable a new generation of precision measurements to probe deeper into the nature of the universe. Existing measurements may contain the signatures of underlying quantum correlations or other sources of new physics that are inaccessible to classical analysis techniques. Quantum algorithms that leverage these properties could potentially extract more information from a given dataset than classical algorithms.”
Our scientists have been working with a team at DESY, one of the world’s leading accelerator centers, to bring the power of quantum computing to particle physics. DESY, short for Deutsches Elektronen-Synchrotron, is a national research center for fundamental science located in Hamburg and Zeuthen, where the Center for Quantum Technologies and Applications (CQTA) is based. DESY operates, develops, and constructs particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research. DESY employs about 3,000 staff members from more than 60 nations, and is part of the worldwide computer network to store and analyze the enormous flood of data that is produced by the LHC in Geneva.
In a recent paper, our scientists collaborated with scientists from DESY, the Leiden Institute of Advanced Computer Science (LIACS), and Northeastern University to explore using a generative quantum machine learning model, called a “quantum Boltzmann machine” to untangle data from CERN’s LHC.
The goal was to learn probability distributions relevant to high energy physics better than the corresponding classical models. The data specifically contains “particle jet events”, which describe how colliders collect data about the subatomic particles generated during the experiments.
In some cases the quantum Boltzmann machine was indeed better, compared to a classical Boltzmann machine. The team is analyzed when and why this happens, understanding better how to apply these new quantum tools in this research setting. The team also studied the effect of the data encoding into a quantum state, noting that it can have a decisive effect on the training performance. Especially enticing is that the quantum Boltzmann machine is efficiently trainable, which our scientists showed in a recent paper published in Nature Communications Physics.
Find the Quantinuum team at this year’s SC24 conference from November 17th – 22nd in Atlanta, Georgia. Meet our team at Booth #4351 to discover how Quantinuum is bridging the gap between quantum computing and high-performance compute with leading industry partners.
The Quantinuum team will be participating in the below panel and poster sessions to showcase our quantum computing technologies.
Panel: KAUST booth 1031
Nash Palaniswamy, Quantinuum’s CCO, will join a panel discussion with quantum vendors and KAUST partners to discuss advancements in quantum technology.
Panel: Educating for a Hybrid Future: Bridging the Gap between High-Performance and Quantum Computing
Vincent Anandraj, Quantinuum’s Director of Global Ecosystem and Strategic Alliances, will moderate this panel which brings together experts from leading supercomputing centers and the quantum computing industry, including PSC, Leibniz Supercomputing Centre, IQM Quantum Computers, NVIDIA, and National Research Foundation.
Presentation: Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation
Pablo Andres-Martinez, Research Scientist at Quantinuum, will present research done in collaboration with HSBC, where the team applied quantum methods to fraud detection.