Quantinuum’s recent announcement about its breakthrough on topological qubits garnered headlines across both the specialist scientific media as well as those more broadly interested in the advances that will make quantum computing useful more quickly than anticipated. However, hidden in the details was a reference to a technology that is as rare as it is valuable. The fact is that the topological qubit that was generated could only have been done via Quantinuum’s H-Series quantum processors due to their various qualities and functions of which measurement and ‘feed-forward’ is critical.
As we know, great advances are often built on the back of little-known utilities - functions and tools that rarely get mentioned. These are sometimes technological constructs that might seem simple on the surface, but which are difficult (in the case of feed-forward make that “very difficult” to create), and without which critical advances would remain merely theoretical.
As detailed in two manuscripts that have been uploaded onto the pre-print repository, arXiv, Quantinuum researchers and their collaborators successfully demonstrated, for the first time, a large-scale implementation of a long-standing theory in quantum information science; namely the use of measurement and feed-forward (see below for a detailed explanation of what this means) to efficiently generate long-range entangled states.
The two experiments, conducted with research partners at the California Institute of Technology, Harvard University, the University of Sydney, the Perimeter Institute for Theoretical Physics and the University of California, Davis, used Quantinuum’s trapped ion quantum computers, Powered by Honeywell, to show how feed-forward enables success by dramatically reducing the resources required to produce highly-entangled quantum states and topologically ordered phases, one of the most exciting areas of research in modern physics.
Feed-forward uses selective measurements during the execution of a quantum circuit and adapts future operations depending on those measurement results. To be successful in running an adaptive quantum circuit, several challenging requirements must be met: (1) a select group of qubits must be measured in the middle of a circuit with high fidelity, and without accidentally measuring other qubits, and (2) the measurement results must be sent to a classical computer and quickly processed to create instructions to be fed-forward to the quantum computer on the fly - all of which must be done fast enough to prevent the active qubits from decohering.
Once these requirements are met, the feed-forward capabilities let quantum computers create long-range entangled states which are emerging as central to various branches of modern physics such as quantum error correction codes and the study of spin liquids in condensed matter. It is also the essential component of topological order and could enable the simulation of quantum systems beyond the reach of classical computation.
In the paper “Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer”, Quantinuum, working with colleagues from the California Institute of Technology and Harvard University use feed-forward to explore topologically ordered phases of matter.
Separately, a different team of scientists from Quantinuum, the University of Sydney, the Perimeter Institute for Theoretical Physics and the University of California, Davis, used feed-forward to explore adaptive quantum circuits in “Experimental Demonstration of the Advantage of Adaptive Quantum Circuits”.
Two of Quantinuum’s physicists who worked on both experiments, Henrik Dreyer and Michael Foss-Feig, offered some observations on the work.
“While it has been clear to theorists that feed-forward would be a useful primitive, doing it with low errors has turned out to be very challenging. The H-Series systems have made it possible to use this primitive efficiently,” said Henrik, managing director and scientific lead at Quantinuum’s office in Munich, Germany.
Michael, who is based at Quantinuum’s world-leading quantum computing laboratory outside of Denver, Colorado, also described feed-forward and adaptive quantum circuits as a jump toward meaningful simulations.
“This capability speeds up the timeline for new scientific discoveries,” he said.
These successful experiments proved that feed-forward operations reduce the quantum resources required for certain algorithms and are a valuable building block for more advanced research.
"I am really excited by the opportunities opened up by this demonstration: using wave-function collapse is a very powerful tool for preparing very exotic entangled states further down the road, where there are no good scalable alternatives," said Dr. Ruben Verresen, a physicist at Harvard University and a co-author of the topological order paper.
The authors note that “the primary technical challenge in implementing adaptive circuits is the requirement to perform partial measurements of a subset of qubits in the middle of a quantum circuit with minimal cross-talk on unmeasured qubits, return those results to a classical computer for processing, and then condition future operations on the results of that processing in real time.”
The paper describes how quantum hardware has now reached a state where adaptive quantum circuits are possible and can outperform unitary circuits. The experiment detailed in the paper “firmly establishes that given access to the same amount of quantum computational resources with respect to available gates and circuit depth, adaptive quantum circuits can perform tasks that are impossible for quantum circuits without feedback.”
Henrik and Michael noted that the adaptive circuit research provides concrete evidence not only that feed-forward works, but that it now works well enough to achieve tasks that would not be possible without it.
“We were trying to find a metric by which somebody can look at our data produced by a shallow adaptive circuit, and convince themselves it could not have been produced with a unitary circuit of the same depth,” Michael said. The metric proposed in the adaptive circuits paper achieved exactly that.
Demonstrating this technique required significant performance from the H1-1.
“It's a huge challenge to implement this in a way that works well,” Michael said.
Quantinuum’s H-Series has the capabilities that are crucial to this work: high fidelity gates, low state preparation and measurement (SPAM) error, low memory error, the ability to perform mid-circuit measurement, and all-to-all connectivity.
The feed-forward theory has been well-known for years but challenging to execute in practice, and as the paper states:
“While individual elements of this triad have been demonstrated in the context of error correction and topological order, combining all of these ingredients into one experimental platform has proven elusive since the inception of this idea more than a decade ago. Here, we demonstrate for the first time the deterministic, high-fidelity preparation of long-range entangled quantum states using a protocol with constant depth, using Quantinuum’s H-Series programmable Ytterbium ion trap quantum computer.”
The authors also note that “the all-to-all connectivity of the device was vital for the implementation of the periodic two-dimensional geometry and the conditional dynamics.”
In summary – these papers showcase state-of-the-art demonstrations of what can be done with quantum computers today but are only a preview of what will be done tomorrow.
Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents.
At the heart of quantum computing’s promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the Generative Quantum Eigensolver (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we’re not just feeding an AI more text from the internet; we’re giving it new and valuable data that can’t be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule’s ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force—testing every possible state and measuring its energy—because the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That’s where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H₂). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we’re the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems—from combinatorial optimization to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We’re already looking at applying GQE to more complex molecules—ones that can’t currently be solved with existing methods, and we’re exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN’s campus in Wako, Saitama. This deployment is part of RIKEN’s project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and Quantinuum Systems.
Today, a paper published in Physical Review Research marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and Quantinuum joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems.
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper here, and read more about our partnership with RIKEN here.
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent report by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent research by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received NIST SP 800-90B Entropy Source validation, marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market.
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
Quantinuum delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.