Communication is the connective tissue of society, weaving individuals into groups and communities and mediating the progress and development of culture. The technology of communications evolves continuously, occasionally undergoing paradigm shifts such as those brought about by the Gutenberg press and broadcast television.
From historical examples such as the proliferation of fast merchant trading ships, to the modern telecommunications networks spread across the world via a web of cables buried under the sea floor and satellites thousands of kilometres high, the need for better communication infrastructure has driven some of our most ambitious technologies to date.
Today, emerging quantum technologies are poised to revolutionise the field of communication once again. They promise new and incredibly valuable opportunities for dependable and secure communications between people, communities, companies, and governments everywhere. Our ability to understand and control quantum systems has opened a new world of exciting possibilities. Soon we might build long-distance quantum communication links and networks, eventually leading to what is known as the quantum internet.
While some embryonic quantum communication systems are already in place, realisation of their full potential will require significant technological advances. With engineering teams around the world working at pace to deliver this promise across industrial sectors, the need to invest in expert knowledge is rising.
NASA has been a pioneer in space-based communication over many decades, and more recently has emerged as a leader in space-based quantum communication, dedicating new resources for scientists, engineers and communication systems experts to learn about the field.
Recently, NASA’s Space Communications and Navigation (SCaN) program commissioned a booklet titled Quantum Communication 101, authored by several of our team at Quantinuum. This will be a go-to resource for the global community of scientists and experts that NASA supports, but importantly it has been written so that it requires almost no prior technical knowledge while providing a rigorous account of the emerging field of quantum communications.
What follows is a taster of what’s in Quantum Communication 101.
What is quantum communication?
For the words I am typing now to reach your computer screen, I need to rely on modern communication networks. My laptop memory, Wi-Fi router and communication channels rely on the physics of things like transistors, currents, and radio waves which obey the more familiar, “classical" laws of physics.
The field of quantum communication, however, relies on the counterintuitive rules of quantum physics. Thanks to incredible feats of engineering, in place of continuous beams of light from diodes, we can now control individual photons to send and receive quantum information. By taking advantage of the peculiar quantum phenomena that they exhibit, like superposition and entanglement, new possibilities are emerging which were previously unimaginable.
Cutting-edge applications
In the growing landscape of potential applications in quantum communication, cybersecurity is already deeply rooted. At Quantinuum, for example, quantum computers are used to generate randomness, the fundamental building block of secure encryption. Elsewhere, prototype quantum networks for secure communications already span metropolitan areas.
As our techniques in quantum communication advance, we may unlock new possibilities in quantum computing, which promises to solve problems too difficult even for supercomputers, and quantum metrology, which will enable measurements at an unprecedented precision. Quantum states of light have already been used in LIGO - a large-scale experiment operated by CalTech and MIT to detect ripples in the fabric of space-time itself.
Connecting the dots: towards a quantum internet
The end goal of quantum communication is what many refer to as the quantum internet, through which we will seamlessly send quantum signals across many quantum networks. This will be an enormous engineering challenge, requiring international collaboration and the evolution of our existing infrastructure.
Although the exact form that this network will take is yet unknown, we can say with confidence that it will need to pass through space. Much like satellites help to globally connect the Internet, the launch of quantum-capable satellites will play a vital role in a global quantum internet.
Building a quantum ecosystem
The path to a quantum internet will depend on growing a diverse and expert workforce. This is well understood by bodies such as the National Science Foundation who recently announced a $5.1M Center for Quantum Networks aimed at architecting the quantum internet. Over the last few years, we have seen growing investment worldwide, such as the $1.1B Quantum Technology Flagship in Europe and the $11B Chinese National Laboratory for Quantum Information Science. Important industrial investments are being made by large corporations such as IBM, Google, Intel, Honeywell, Cisco, Amazon, and Microsoft.
Amongst this surge in interest, NASA’s SCaN program has proposed a series of mission concepts for building and testing infrastructure for space-based quantum communication. These include launching satellites capable of sending and receiving quantum signals between ground stations and eventually other satellites. These quantum signals may be entangled photons – a feature that will play an extremely important role in future networks. One such mission concept is shown below, where a quantum-capable satellite with a source of entangled photons connects an intercontinental quantum network.
The second quantum revolution is at an exciting precipice where our ability to transmit quantum information, both on Earth and in space, will be pivotal. Whilst our evolving quantum technologies already show a great deal of promise, it is perhaps the ground-breaking applications that we are yet to discover which will ultimately determine our success.
It is more important than ever that we support education and collaboration in advancing quantum technologies. Quantum Communication 101 aims to be a starting point for a general audience looking to learn about the topic for the first time, as well as those who wish to explore in detail the technologies that will make the first quantum networks a reality.
If you would like to better understand the exciting prospects of quantum communication, you can find the Quantum Communication 101 booklet on the NASA SCaN website.