Wherever you’re sitting right now, you’re probably surrounded by the fruits of modern semiconductor technology. Chips aren't only in your laptops and cell phones – they're in your car, your doorbell, your thermostat, and even your toaster. Importantly, semiconductor-based chips are also in the heart of most quantum computers.
While quantum computing holds transformative potential, it faces two major challenges: first, achieving low error operations (say one in a billion), and second, scaling systems to enough qubits to address complex, real-world problems (say, on the order of a million). Quantinuum is proud to lead the industry in providing the lowest error rates in the business, but some continue to question whether our chosen modality, trapped-ion technology, can scale to meet these ambitious goals.
Why the doubt? Well, early demonstrations of trapped-ion quantum computers relied on bulky, expensive laser sources, large glass optics, and sizeable ion traps assembled by hand. By comparison, other modalities, such as semiconductor and superconductor qubits, resemble conventional computer chips. However, our quantum-charge-coupled device (QCCD) architecture shares the same path to scaling: at their core, our quantum computers are also chip-based. By leveraging modern microfabrication techniques, we can scale effectively while maintaining the advantage of low error rates that trapped ions provide.
Fortunately, we are at a point in history where QCCD quantum computing is already more compact compared to the early days. Traditional oversized laser sources have already been replaced by tiny diode lasers based on semiconductor chips, and our ion traps have already evolved from bulky, hand-assembled objects to traps fabricated on silicon wafers. The biggest remaining challenge lies in the control and manipulation of laser light.
For this next stage in our journey, we have turned to Infineon. Infineon not only builds some of the world’s leading classical computer chips, but they also bring in-house expertise in ion-trap quantum computing. Together, we are developing a chip with integrated photonics, bringing the control and manipulation of light fully onto our chips. This innovation drastically reduces system complexity and paves the way for serious scaling.

Copyright: Infineon
Since beginning work with Infineon, our pace of innovation has accelerated. Their expertise in fabricating waveguides, building grating couplers, and optimizing deposition processes for ultra-low optical loss gives us a significant advantage. In fact, Infineon has already developed deposition processes with the lowest optical losses in the world—a critical capability for building high-performance photonic systems.
Their impressive suite of failure analysis tools, such as electron microscopes, SIMS, FIB, AFMs, and Kelvin probes, allow us to diagnose and correct failures in days rather than weeks. Some of these tools are in-line, meaning analysis can be performed without removing devices from the cleanroom environment, minimizing contamination risk and further accelerating development.
Together, we are demonstrating that QCCD quantum computing is fundamentally a semiconductor technology—just like conventional computers. While seeming like it’s a world away, quantum computing is now closer to home than ever.


