The Quantinuum team is looking forward to participating in this year’s SCAsia conference from March 10th – 13th in Singapore. Meet our team at Booth B2 to discover how Quantinuum is bridging the gap between quantum computing and high-performance compute with leading industry partners.
Our team will be participating in workshops and presenting at the keynote and plenary sessions to showcase our quantum computing technologies. Join us at the below sessions:
Monday, March 10th, 1:30 – 2:30pm
Workshop: Accelerating Quantum Supercomputing: CUDA-Q Tutorial across Multiple Quantum Platforms
Location: Room P10 – Peony Jr 4512 (Level 4)
This workshop will explore the seamless integration of classical and quantum resources for quantum-accelerated supercomputing. Join Kentaro Yamamoto and Enrico Rinaldi, Lead R&D Scientists at Quantinuum, for an Introduction to our integrated full-stack for quantum computing, Quantum Phase Estimation (QPE) for solving quantum chemistry problems, and a demonstration of a QPE algorithm with CUDA-Q on Quantinuum Systems. If you're interested in access to our quantum computers and emulator for use on the CUDA-Q platform, register here.
Tuesday, March 11th, 11:00 – 11:30pm
Keynote: Quantum Computing: A Transformative Force for Singapore's Regional Economy
Location: Melati Ballroom (Level 4)
Quantum Computing is no longer a distant promise; it has arrived and is poised to revolutionize several economies. Join our President and CEO, Dr. Rajeeb Hazra, to discover how Quantinuum’s approach to Quantum Generative AI is driving breakthroughs in applications which hold significant relevance for Singapore, in fields like chemistry, computational biology, and finance. Additionally, Raj will discuss the challenges and opportunities of adopting quantum solutions from both technical and business perspectives, emphasizing the importance of collaboration to build quantum applications that integrate the best of quantum and AI.
Tuesday, March 11th, 5:40 – 6:00pm
Industry Breakout Track: Transformative value of Quantum and AI: bringing meaningful insights for critical applications today
Location: Room L1 – Lotus Jr (Level 4)
The ability to solve classically intractable problems defines the transformative value of quantum computing, offering new tools to redefine industries and address complex humanity challenges. In this session with Dr. Elvira Shishenina, Senior Director of Strategic Initiatives, discover how Quantinuum’s hardware is leading the way in achieving early fault-tolerance, marking a significant step forward in computational capabilities. By integrating quantum technology with AI and high-performance computing, we are building systems designed to address real-world issues with efficiency, precision and scale. This approach empowers critical applications from hydrogen fuel cells and carbon capture to precision medicine, food security, and cybersecurity, providing meaningful insights at a commercial level today.
Wednesday, March 12th, 4:40 – 5:00pm
Hybrid Quantum Classical Computing Track: Quantifying Quantum Advantage with an End-to-End Quantum Algorithm for the Jones Polynomial
Location: Room O3 – Orchid Jr 4211-2 (Level 4)
Join Konstantinos Meichanetzidis, Head of Scientific Product Development, for this presentation on an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer. Specifically, they estimate the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. In their research, they demonstrate our quantum algorithm on Quantinuum’s H2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, they construct an efficiently verifiable benchmark to characterize the effect of noise present in a given quantum processor. In parallel, they implement and benchmark the state-of-the-art tensor-network-based classical algorithms.The practical tools provided in the work presented will allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Thursday, March 13th, 11:00 – 11:30pm
Industry Plenary: Quantum Heuristics: From Worst Case to Practice
Location: Melati Ballroom (Level 4)
Which problems allow for a quantum speedup, and which do not? This question lies at the heart of quantum information processing. Providing a definitive answer is challenging, as it connects deeply to unresolved questions in complexity theory. To make progress, complexity theory relies on conjectures such as P≠NP and the Strong Exponential Time Hypothesis, which suggest that for many computational problems, we have discovered algorithms that are asymptotically close to optimal in the worst case. In this talk, Professor Harry Buhrman, Chief Scientist for Algorithms and Innovation, will explore the landscape from both theoretical and practical perspectives. On the theoretical side, I will introduce the concept of “queasy instances”—problem instances that are quantum-easy but classically hard (classically queasy). On the practical side, I will discuss how these insights connect to advancements in quantum hardware development and co-design.
*All times in Singapore Standard Time